What Would Cicero Write?
Examining Critical Textual Decisions with a Language Model
DOI:
https://doi.org/10.13135/2532-5353/6523Abstract
Recent developments in Transformer language models now allow users to predict the probability of different sentences and to predict missing words more accurately than before. This new information and perspective can be used to form judgments on novel textual emendations and to further quantify existing historical editorial judgments. We examine the importance of analyzing an author’s corpus, and the impact of the Good-Turing theory of frequency estimation when predicting missing words. We will also outline some of the limits of what Transformer language models can do, and how to practically evaluate them.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.