Criticality assessment of green materials: institutional quality, market concentration and recycling potential

Criticality assessment of green materials

Keywords: Critical raw materials, Responsible sourcing, Market concentration, Conflict minerals, Circularity

Abstract

The carbon transition and digitalization transformation are tied to a set of critical raw materials (CRM). Energy accumulators, renewable energy modules, and electronic devices all contain a certain amount of these. The versatility and utility of such elements come together with the limited number of countries where their extraction and refining take place. As the demand for these materials is growing globally, main concerns arise regarding the security of the production chain. Several works highlighted the risks associated with these materials without presenting clear interaction between such factors. This article presents a study over the three aspects showed: market concentration, institutional quality, and circularity. The approach will contain the presentation of the main characteristics of recyclability and the institutional status of exporters. A synthetic index is derived and plotted against the potential of recycling per material. In such a manner, we can group minerals according to sourcing vulnerability: one is coming from material recovery and the other via imports. An indicator calculated with a Cartesian distance method provides the synthesis of security versus safety. According to our findings, Electrical Vehicles carry the highest vulnerability for their main components in circularity and human rights violations. Ending remarks highlighted the limitations of our research, where possible interest for future research may lay.

References

Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., Durrheim, R., Enriquez, M. A., Kinnaird, J., Littleboy, A., Meinert, L. D., Oberhänsli, R., Salem, J., Schodde, R., Schneider, G., Vidal, O., & Yakovleva, N. (2017). Mineral supply for sustainable development requires resource governance. Nature, 543(7645), 367–372. https://doi.org/10.1038/nature21359

Ambekar, S., Prakash, A., & Patyal, V. S. (2019). Role of culture in low carbon supply chain capabilities. Journal of Manufacturing Technology Management, 30(1), 146–179. https://doi.org/10.1108/JMTM-01-2018-0024

Arendt, R., Muhl, M., Bach, V., & Finkbeiner, M. (2020). Criticality assessment of abiotic resource use for Europe– application of the SCARCE method. Resources Policy, 67, 101650. https://doi.org/10.1016/j.resourpol.2020.101650

Blagoeva, D., Alves Dias, P., Marmier, A., & Pavel, C. (2016). Assessment of potential bottlenecks along the materials supply chain for the future deployment of low-carbon energy and transport technologies in the EU: Wind power, photovoltaic and electric vehicles technologies, time frame: 2015-2030. https://doi.org/10.2790/08169

Bleischwitz, R. (2020). Mineral resources in the age of climate adaptation and resilience. Journal of Industrial Ecology, 24(2), 291–299. https://doi.org/10.1111/jiec.12951

Bleischwitz, R., & Bahn‐Walkowiak, B. (2007). Aggregates and Construction Markets in Europe: Towards a Sectoral Action Plan on Sustainable Resource Management. Minerals & Energy - Raw Materials Report, 22(3–4), 159–176. https://doi.org/10.1080/14041040701683664

Blengini, G. A., Nuss, P., Dewulf, J., Nita, V., Talens Peiró, L., Vidal-Legaz, B., Latunussa, C., Mancini, L., Blagoeva, D., Pennington, D., Pellegrini, M., Van Maercke, A., Solar, S., Grohol, M., & Ciupagea, C. (2017). EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements. Resources Policy, 53, 12–19. https://doi.org/10.1016/j.resourpol.2017.05.008

Bobba, S., Carrara, S., Huisman, J., Mathieux, F., & Pavel, C. (2020). Critical Raw Materials for Strategic Technologies and Sectors in the EU - a Foresight Study. In European Commission. https://doi.org/10.2873/58081

British Geological Survey, B. (2015). British Geological Survey Risk List 2015. Risk List 2015.

Chiu, A. S. F., Aviso, K. B., & Tan, R. R. (2020). On general principles at the sustainability science-policy interface. Resources, Conservation and Recycling, 158. https://doi.org/10.1016/j.resconrec.2020.104828

Church, C., & Crawford, A. (2018). Conflict Minerals : The fuels of conflict.

Cimprich, A., Bach, V., Helbig, C., Thorenz, A., Schrijvers, D., Sonnemann, G., Young, S. B., Sonderegger, T., & Berger, M. (2019). Raw material criticality assessment as a complement to environmental life cycle assessment: Examining methods for product-level supply risk assessment. Journal of Industrial Ecology, 23(5), 1226–1236. https://doi.org/10.1111/jiec.12865

Commission of the European Communities. (2008). The raw materials initiative : meeting our critical needs for growth and jobs in Europe (No. 699).

Cossu, R., & Williams, I. D. (2015). Urban mining: Concepts, terminology, challenges. Waste Management, 45, 1–3. https://doi.org/10.1016/j.wasman.2015.09.040

Deloitte. (2015). Study on Data for a Raw Material System Analysis: Roadmap and Test of the Fully Operational MSA for Raw Materials.

EU. (2017). Regulation (EU) 2017/821 of the European Parliament and of the Council of 17 May 2017 laying down supply chain due diligence obligations for Union importers of tin, tantalum and tungsten, their ores, and gold originating from conflict-affected and high-ri. Official Journal of the European Union, 60.

Expósito, A., & Velasco, F. (2018). Municipal solid-waste recycling market and the European 2020 Horizon Strategy: A regional efficiency analysis in Spain. Journal of Cleaner Production, 172, 938–948. https://doi.org/10.1016/j.jclepro.2017.10.221

Ferro, P., & Bonollo, F. (2019). Materials selection in a critical raw materials perspective. Materials & Design, 177, 107848. https://doi.org/10.1016/j.matdes.2019.107848

Gandenberger, C., Glöser, S., Marscheider-Weidemann, F., Ostertag, K., & Rainer, W. (2012). Die Versorgung der deutschen Wirtschaft mit Roh- und Werkstoffen für Hochtechnologien – Präzisierung und Weiterentwicklung der deutschen Rohstoffstrategie.

Homrich, A. S., Galvão, G., Abadia, L. G., & Carvalho, M. M. (2018). The circular economy umbrella: Trends and gaps on integrating pathways. In Journal of Cleaner Production (Vol. 175, pp. 525–543). Elsevier. https://doi.org/10.1016/j.jclepro.2017.11.064

Hàmor, T. (2004). Sustainable Mining in the European Union: The Legislative Aspect. Environmental Management, 33(2), 252–261. https://doi.org/10.1007/s00267-003-0081-7

Jones, B., Elliott, R. J. R., & Nguyen-Tien, V. (2020). The EV revolution: The road ahead for critical raw materials demand. Applied Energy, 280(April), 115072. https://doi.org/10.1016/j.apenergy.2020.115072

Kasulaitis, B. V, Babbitt, C. W., Kahhat, R., Williams, E., & Ryen, E. G. (2015). Evolving materials, attributes, and functionality in consumer electronics: Case study of laptop computers. Resources, Conservation and Recycling, 100, 1–10. https://doi.org/https://doi.org/10.1016/j.resconrec.2015.03.014

Kaufmann, D., Kraay, A., & Mastruzzi, M. (2011). The Worldwide Governance Indicators: Methodology and Analytical Issues. Hague Journal on the Rule of Law, 3(02), 220–246. https://doi.org/10.1017/S1876404511200046

Koch, D.-J., & Burlyuk, O. (2020). Bounded policy learning? EU efforts to anticipate unintended consequences in conflict minerals legislation. Journal of European Public Policy, 27(10), 1441–1462. https://doi.org/10.1080/13501763.2019.1675744

KUNČIČ, A. (2014). Institutional quality dataset. Journal of Institutional Economics, 10(1), 135–161. https://doi.org/10.1017/S1744137413000192

Lapko, Y., Trianni, A., Nuur, C., & Masi, D. (2019). In Pursuit of Closed-Loop Supply Chains for Critical Materials: An Exploratory Study in the Green Energy Sector. Journal of Industrial Ecology, 23(1), 182–196. https://doi.org/10.1111/jiec.12741

Lepawsky, J. (2018). Reassembling Rubbish: Worlding Electronic Waste. MIT Press. https://ieeexplore.ieee.org/servlet/opac?bknumber=8544156

Martins, F., & Castro, H. (2019). Significance ranking method applied to some EU critical raw materials in a circular economy – Priorities for achieving sustainability. Procedia CIRP, 84, 1059–1062. https://doi.org/10.1016/j.procir.2019.04.281

Martins, F. F., & Castro, H. (2020). Raw material depletion and scenario assessment in European Union – A circular economy approach. Energy Reports, 6, 417–422. https://doi.org/10.1016/j.egyr.2019.08.082

Maxwell, R. (2014). Media and the Ecological Crisis. In Media and the Ecological Crisis. Routledge. https://doi.org/10.4324/9781315885650

Mayyas, A., Steward, D., & Mann, M. (2019). The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies, 19, e00087. https://doi.org/10.1016/j.susmat.2018.e00087

Mazzarano, M. (2020). Estimating total potential material recovery from EEE in EU28. Resources Policy, 68. https://doi.org/10.1016/j.resourpol.2020.101785

Misopoulos, F., Argyropoulou, R., Manthou, V., Argyropoulou, M., & Kelmendi, I. (2020). Carbon emissions of bottled water sector supply chains: a multiple case-study approach. International Journal of Logistics Research and Applications, 23(2), 178–194. https://doi.org/10.1080/13675567.2019.1626815

Monnet, A., & Ait Abderrahim, A. (2018). Report on major trends affecting future demand for critical raw materials.

Mudd, G. M., Jowitt, S. M., & Werner, T. T. (2018). Global platinum group element resources, reserves and mining – A critical assessment. Science of The Total Environment, 622–623, 614–625. https://doi.org/10.1016/j.scitotenv.2017.11.350

OECD. (2016a). OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas. In OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas. OECD Publishing. https://doi.org/10.1787/9789264252479-en

OECD. (2016b). OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas (Third). OECD Publishing. https://doi.org/10.1787/9789264252479-en

OECD. (2020). Promoting coherence between standards on responsible mineral supply chains: The OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas and the Extractive Industries Transparency Initiative Standard.

Pehlken, A., Albach, S., & Vogt, T. (2017). Is there a resource constraint related to lithium ion batteries in cars? International Journal of Life Cycle Assessment, 22(1), 40–53. https://doi.org/10.1007/s11367-015-0925-4

Piontek, F., Herrmann, C., & Saraev, A. (2021). Steps from Zero Carbon Supply Chains and Demand of Circular Economy to Circular Business Cases. European Journal of Social Impact and Circular Economy, 2(2 SE-). https://doi.org/10.13135/2704-9906/5712

Rabe, W., Kostka, G., & Smith Stegen, K. (2017). China’s supply of critical raw materials: Risks for Europe’s solar and wind industries? Energy Policy, 101, 692–699. https://doi.org/10.1016/j.enpol.2016.09.019

Raudaskoski, A., Lenau, T., Jokinen, T., Gisslén, A. V., & Metze, A.-L. (2019). Designing plastics circulation. Nordic Council of Ministers. https://doi.org/10.6027/TN2019-534

Santillán-Saldivar, J., Cimprich, A., Shaikh, N., Laratte, B., Young, S. B., & Sonnemann, G. (2021a). How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resources, Conservation and Recycling, 164, 105108. https://doi.org/10.1016/j.resconrec.2020.105108

Santillán-Saldivar, J., Cimprich, A., Shaikh, N., Laratte, B., Young, S. B., & Sonnemann, G. (2021b). How recycling mitigates supply risks of critical raw materials: Extension of the geopolitical supply risk methodology applied to information and communication technologies in the European Union. Resources, Conservation and Recycling, 164, 105108. https://doi.org/10.1016/j.resconrec.2020.105108

Scarpellini, S. (2021). Social indicators for businesses’ circular economy: multi-faceted analysis of employment as an indicator for sustainability reporting. European Journal of Social Impact and Circular Economy, 2(1 SE-). https://doi.org/10.13135/2704-9906/5282

Schaubroeck, T. (2020). Circular economy practices may not always lead to lower criticality or more sustainability; analysis and guidance is needed per case. In Resources, Conservation and Recycling (Vol. 162, p. 104977). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2020.104977

Schrijvers, D., Hool, A., Blengini, G. A., Chen, W.-Q., Dewulf, J., Eggert, R., van Ellen, L., Gauss, R., Goddin, J., Habib, K., Hagelüken, C., Hirohata, A., Hofmann-Amtenbrink, M., Kosmol, J., Le Gleuher, M., Grohol, M., Ku, A., Lee, M.-H., Liu, G., Wäger, P. A. (2020). A review of methods and data to determine raw material criticality. Resources, Conservation and Recycling, 155. https://doi.org/10.1016/j.resconrec.2019.104617

Silva, S., & Schaltegger, S. (2019). Social assessment and management of conflict minerals: a systematic literature review. Sustain. Accounting, Manag. Policy J., 10(1), 157–182. https://doi.org/10.1108/SAMPJ-02-2018-0029

Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.01.081

Stefanakis, A. (2019). The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability, 11(24), 6981. https://doi.org/10.3390/su11246981

Stiglitz, J. E., Fitoussi, J.-P., & Durand, M. (2018). Beyond GDP. OECD. https://doi.org/10.1787/9789264307292-en

Tabner, I. T. (2007). A Review of Concentration, Diversity or Entropy Metrics in Economics, Finance, Ecology and Communication Science. The International Journal of Interdisciplinary Social Sciences: Annual Review, 2(4), 53–60. https://doi.org/10.18848/1833-1882/CGP/v02i04/52345

Talens Peiró, L., Nuss, P., Mathieux, F., & Blengini, G. A. (2018). Towards Recycling Indicators based on EU flows and Raw Materials System Analysis data Supporting the EU-28 (Issue October). Publications Office of the European Union. https://doi.org/10.2760/092885

Tercero Espinoza, L., Schrijvers, D., Chen, W.-Q., Dewulf, J., Eggert, R., Goddin, J., Habib, K., Hagelüken, C., Hurd, A. J., Kleijn, R., Ku, A. Y., Lee, M.-H., Nansai, K., Nuss, P., Peck, D., Petavratzi, E., Sonnemann, G., van der Voet, E., Wäger, P. A., Hool, A. (2020). Greater circularity leads to lower criticality, and other links between criticality and the circular economy. Resources, Conservation and Recycling, 159. https://doi.org/10.1016/j.resconrec.2020.104718

Vrkljan, D., Klanfar, M., Tost, M., & Endl, A. (2017). MIN-GUIDE Version Innovative Exploration and Extraction Deliverable 3.4. Guidelines and recommendations for future policy and legislation Minerals Policy Guidance for Europe MIN-GUIDE -D 3.4. Guidelines and recommendations for future policy and legislation. https://doi.org/10.13140/RG.2.2.23128.65289

Young, S. B. (2018). Responsible sourcing of metals: certification approaches for conflict minerals and conflict-free metals. The International Journal of Life Cycle Assessment, 23(7), 1429–1447. https://doi.org/10.1007/s11367-015-0932-5

Ziemann, S., Müller, D. B., Schebek, L., & Weil, M. (2018). Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, Conservation and Recycling, 133, 76–85. https://doi.org/https://doi.org/10.1016/j.resconrec.2018.01.031

Published
2021-11-06
How to Cite
Mazzarano, M. (2021). Criticality assessment of green materials: institutional quality, market concentration and recycling potential: Criticality assessment of green materials. European Journal of Social Impact and Circular Economy, 2(3), 1-14. https://doi.org/10.13135/2704-9906/5988