Economic evaluation framework for Industrial Symbiosis through network lenses: a systematic literature review
DOI:
https://doi.org/10.13135/2704-9906/10926Keywords:
industrial symbiosis, economic evaluation, networking, industrial ecology, circular economyAbstract
Current economic and productive systems, characterized by huge resource consumption, cause significant environmental and social impacts, underlining their intrinsic unsustainability. This research explored circular economy models, in particular Industrial Symbiosis (IS) process, involving materials, energy, water and by-products exchange among different entities. Although the economic aspect is often considered as of paramount importance, IS costs and benefits proved to be scarcely identified and properly quantified in the existing literature. Therefore, through a systematic review of recent literature (2019-2023), 61 articles were analyzed to fill this knowledge gap, pinpointing areas of potential economic advantage or disadvantage. The result is an innovative and detailed framework for IS economic feasibility analysis, including revenues and costs items, calculation methodologies and specific performance KPIs. This research contributes to the broad comprehension of economic benefits, bolstering sustainable practices and network business models adoption.
References
Ahmad Fadzil, F., Andiappan, V., Ng, D. K. S., Ng, L. Y., & Hamid, A. (2022). Sharing carbon permits in industrial symbiosis: A game theory-based optimization model. Journal of Cleaner Production, 357, 131820. https://doi.org/10.1016/j.jclepro.2022.131820.
Albino, V., Fraccascia, L., & Giannoccaro, I. (2016). Exploring the role of contracts to support the emergence of self-organized industrial symbiosis networks: An agent-based simulation study. Journal of Cleaner Production, 112, 4353–4366. https://doi.org/10.1016/j.jclepro.2015.06.070.
Ali, A. K., Kio, P. N., Alvarado, J., & Wang, Y. (2020). Symbiotic Circularity in Buildings: An Alternative Path for Valorizing Sheet Metal Waste Stream as Metal Building Facades. Waste and Biomass Valorization, 11(12), 7127–7145. https://doi.org/10.1007/s12649-020-01060-y.
Ali, A. K., Wang, Y., & Alvarado, J. L. (2019). Facilitating industrial symbiosis to achieve circular economy using value-added by design: A case study in transforming the automobile industry sheet metal waste-flow into Voronoi facade systems. Journal of Cleaner Production, 234, 1033–1044. https://doi.org/10.1016/j.jclepro.2019.06.202.
Al-Quradaghi, S., Zheng, Q. P., Betancourt-Torcat, A., & Elkamel, A. (2022). Optimization Model for Sustainable End-of-Life Vehicle Processing and Recycling. Sustainability, 14(6), 3551. https://doi.org/10.3390/su14063551.
Ansanelli, G., Fiorentino, G., Chifari, R., Meisterl, K., Leccisi, E., & Zucaro, A. (2023). Sustainability Assessment of Coffee Silverskin Waste Management in the Metropolitan City of Naples (Italy): A Life Cycle Perspective. Sustainability, 15(23), 16281. https://doi.org/10.3390/su152316281.
Asghari, M., Afshari, H., Jaber, M. Y., & Searcy, C. (2023). Dynamic deployment of energy symbiosis networks integrated with organic Rankine cycle systems. Renewable and Sustainable Energy Reviews, 183, 113513. https://doi.org/10.1016/j.rser.2023.113513
.
Baldassarre, B., Schepers, M., Bocken, N., Cuppen, E., Korevaar, G., & Calabretta, G. (2019). Industrial Symbiosis: Towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. Journal of Cleaner Production, 216, 446–460. https://doi.org/10.1016/j.jclepro.2019.01.091.
Bocken, N. M. P., Short, S. W., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, 42–56. https://doi.org/10.1016/j.jclepro.2013.11.039.
Boix, M., Négny, S., Montastruc, L., & Mousqué, F. (2023). Flexible networks to promote the development of industrial symbioses: A new optimization procedure. Computers & Chemical Engineering, 169, 108082. https://doi.org/10.1016/j.compchemeng.2022.108082.
Boons, F., Chertow, M., Park, J., Spekkink, W., & Shi, H. (2017). Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework. Journal of Industrial Ecology, 21(4), 938–952. https://doi.org/10.1111/jiec.12468.
Borbon-Galvez, Y., Curi, S., Dallari, F., & Ghiringhelli, G. (2021). International industrial symbiosis: Cross-border management of aggregates and construction and demolition waste between Italy and Switzerland. Sustainable Production and Consumption, 25, 312–324. https://doi.org/10.1016/j.spc.2020.09.004.
Bütün, H., Kantor, I., & Maréchal, F. (2019). Incorporating Location Aspects in Process Integration Methodology. Energies, 12(17), 3338. https://doi.org/10.3390/en12173338.
Cao, X., Wen, Z., Xu, J., De Clercq, D., Wang, Y., & Tao, Y. (2020). Many-objective optimization of technology implementation in the industrial symbiosis system based on a modified NSGA-III. Journal of Cleaner Production, 245, 118810. https://doi.org/10.1016/j.jclepro.2019.118810.
Cervo, H., Ogé, S., Maqbool, A. S., Mendez Alva, F., Lessard, L., Bredimas, A., Ferrasse, J.-H., & Van Eetvelde, G. (2019). A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology. Sustainability, 11(24), 6940. https://doi.org/10.3390/su11246940.
Chatterjee, A., Brehm, C., & Layton, A. (2021). Evaluating benefits of ecologically-inspired nested architectures for industrial symbiosis. Resources, Conservation and Recycling, 167, 105423. https://doi.org/10.1016/j.resconrec.2021.105423.
Chen, X., Dong, M., Zhang, L., Luan, X., Cui, X., & Cui, Z. (2022). Comprehensive evaluation of environmental and economic benefits of industrial symbiosis in industrial parks. Journal of Cleaner Production, 354, 131635. https://doi.org/10.1016/j.jclepro.2022.131635.
Chertow, M. R. (2000). INDUSTRIAL SYMBIOSIS: Literature and Taxonomy. Annual Review of Energy and the Environment, 25(1), 313–337. https://doi.org/10.1146/annurev.energy.25.1.313-.71
Chertow, M. R. (2007). “Uncovering” Industrial Symbiosis. Journal of Industrial Ecology, 11(1), 11–30. https://doi.org/10.1162/jiec.2007.1110.
Chin, H. H., Varbanov, P. S., Klemeš, J. J., & Bandyopadhyay, S. (2021). Subsidised water symbiosis of eco-industrial parks: A multi-stage game theory approach. Computers & Chemical Engineering, 155, 107539. https://doi.org/10.1016/j.compchemeng.2021.107539.
Colpo, I., Rabenschlag, D. R., De Lima, M. S., Martins, M. E. S., & Sellitto, M. A. (2022a). Economic and Financial Feasibility of a Biorefinery for Conversion of Brewers’ Spent Grain into a Special Flour. Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 79. https://doi.org/10.3390/joitmc8020079.
Colpo, I., Martins, M. E. S., Buzuku, S., & Sellitto, M. A. (2022b). Industrial symbiosis in Brazil: A systematic literature review. Waste Management & Research: The Journal for a Sustainable Circular Economy, 40(10), 1462–1479. https://doi.org/10.1177/0734242X221084065.
Cortez, S. C., Cherri, A. C., Jugend, D., Jesus, G. M. K., & Bezerra, B. S. (2022). How Can Biodigesters Help Drive the Circular Economy? An Analysis Based on the SWOT Matrix and Case Studies. Sustainability, 14(13), 7972. https://doi.org/10.3390/su14137972.
Costanza, F. (2020). The potential of circular businesses in the post-COVID era: A system dynamics view. European Journal of Social Impact and Circular Economy, 1-27 Pages. https://doi.org/10.13135/2704-9906/5098.
De Souza, J. F. T., & Pacca, S. A. (2023). A low carbon future for Brazilian steel and cement: A joint assessment under the circular economy perspective. Resources, Conservation & Recycling Advances, 17, 200141. https://doi.org/10.1016/j.rcradv.2023.200141.
Diaz, F., Vignati, J. A., Marchi, B., Paoli, R., Zanoni, S., & Romagnoli, F. (2021). Effects of Energy Efficiency Measures in the Beef Cold Chain: A Life Cycle-based Study. Environmental and Climate Technologies, 25(1), 343–355. https://doi.org/10.2478/rtuect-2021-0025.
Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., & Roman, L. (2019). Mapping Industrial Symbiosis Development in Europe_ typologies of networks, characteristics, performance and contribution to the Circular Economy. Resources, Conservation and Recycling, 141, 76–98. https://doi.org/10.1016/j.resconrec.2018.09.016.
Dong, L., Taka, G. N., Lee, D., Park, Y., & Park, H. S. (2022). Tracking industrial symbiosis performance with ecological network approach integrating economic and environmental benefits analysis. Resources, Conservation and Recycling, 185, 106454. https://doi.org/10.1016/j.resconrec.2022.106454.
Fahmy, M., Hall, P. W., Suckling, I. D., Bennett, P., & Wijeyekoon, S. (2021). Identifying and evaluating symbiotic opportunities for wood processing through techno-economic superstructure optimisation – A methodology and case study for the Kawerau industrial cluster in New Zealand. Journal of Cleaner Production, 328, 129494. https://doi.org/10.1016/j.jclepro.2021.129494.
Falsafi, M., Terkaj, W., Guzzon, M., Malfa, E., Fornasiero, R., & Tolio, T. (2023). Assessment of valorisation opportunities for secondary metallurgy slag through multi-criteria decision making. Journal of Cleaner Production, 402, 136838. https://doi.org/10.1016/j.jclepro.2023.136838.faro
Faria, E., Caldeira-Pires, A., & Barreto, C. (2021). Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework. Sustainability, 13(13), 7123. https://doi.org/10.3390/su13137123.
Farouk, A. A., & Chew, I. M. L. (2021). Development of a simultaneous mass-water carbon-hydrogen-oxygen symbiosis network. Sustainable Production and Consumption, 28, 419–435. https://doi.org/10.1016/j.spc.2021.06.004.
Fink, A. (2019). Conducting Research Literature Reviews: From the Internet to Paper. SAGE Publications.
Fraccascia, L., Giannoccaro, I., & Albino, V. (2019). Business models for industrial symbiosis: A taxonomy focused on the form of governance. Resources, Conservation and Recycling, 146, 114–126. https://doi.org/10.1016/j.resconrec.2019.03.016.
Fraccascia, L., Yazan, D. M., Albino, V., & Zijm, H. (2020). The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation. International Journal of Production Economics, 221, 107471. https://doi.org/10.1016/j.ijpe.2019.08.006.
Galvan-Cara, A.-L., Graells, M., & Espuña, A. (2022). Application of Industrial Symbiosis principles to the management of utility networks. Applied Energy, 305, 117734. https://doi.org/10.1016/j.apenergy.2021.117734.
Goh, Q. H., Farouk, A. A., & Chew, I. L. (2022). Optimizing the bioplastic chemical building block with wastewater sludge as the feedstock using carbon-hydrogen-oxygen framework. Resources, Conservation and Recycling, 176, 105920. https://doi.org/10.1016/j.resconrec.2021.105920.
Haq, H., Välisuo, P., Kumpulainen, L., Tuomi, V., & Niemi, S. (2020). A preliminary assessment of industrial symbiosis in Sodankylä. Current Research in Environmental Sustainability, 2, 100018. https://doi.org/10.1016/j.crsust.2020.100018.
He, M., Jin, Y., Zeng, H., & Cao, J. (2020). Pricing decisions about waste recycling from the perspective of industrial symbiosis in an industrial park: A game model and its application. Journal of Cleaner Production, 251, 119417. https://doi.org/10.1016/j.jclepro.2019.119417.
Hedlund, A., Björkqvist, O., Nilsson, A., & Engstrand, P. (2022). Energy Optimization in a Paper Mill Enabled by a Three-Site Energy Cooperation. Energies, 15(8), 2715. https://doi.org/10.3390/en15082715.
Henriques, J., Azevedo, J., Dias, R., Estrela, M., & Ascenço, C. (2020). Industrial Symbiosis Incentives: Mitigating risks for facilitated implementation. Zenodo.
Hu, W., Tian, J., Li, X., & Chen, L. (2020). Wastewater treatment system optimization with an industrial symbiosis model: A case study of a Chinese eco‐industrial park. Journal of Industrial Ecology, 24(6), 1338–1351. https://doi.org/10.1111/jiec.13020.
Kerdlap, P., Low, J. S. C., Tan, D. Z. L., Yeo, Z., & Ramakrishna, S. (2022). UM3-LCE3-ISN: A methodology for multi-level life cycle environmental and economic evaluation of industrial symbiosis networks. The International Journal of Life Cycle Assessment. https://doi.org/10.1007/s11367-022-02024-1.
Kosmol, L., & Otto, L. (2020). Implementation Barriers of Industrial Symbiosis: A Systematic Review.
Li, L., Ge, Y., & Xiao, M. (2021). Towards biofuel generation III+: A sustainable industrial symbiosis design of co-producing algal and cellulosic biofuels. Journal of Cleaner Production, 306, 127144. https://doi.org/10.1016/j.jclepro.2021.127144.
Liao, K., Feng, Z., Wu, J., Liang, H., Wang, Y., Zeng, W., Wang, Y., Tian, J., Liu, R., & Chen, L. (2024). Cement kiln geared up to dispose industrial hazardous wastes of megacity under industrial symbiosis. Resources, Conservation and Recycling, 202, 107358. https://doi.org/10.1016/j.resconrec.2023.107358.
Lombardi, D. R., & Laybourn, P. (2012). Redefining Industrial Symbiosis: Crossing Academic–Practitioner Boundaries. Journal of Industrial Ecology, 16(1), 28–37. https://doi.org/10.1111/j.1530-9290.2011.00444.x.
Lybæk, R., Christensen, T. B., & Thomsen, T. P. (2021). Enhancing policies for deployment of Industrial symbiosis – What are the obstacles, drivers and future way forward? Journal of Cleaner Production, 280, 124351. https://doi.org/10.1016/j.jclepro.2020.124351.
Lyu, Y., Feng, Z. A., Ji, T., Tian, J., & Chen, L. (2023). Networking Chemicals Flows: Efficiency–Value–Environment Functionalized Symbiosis Algorithms and Application. Environmental Science & Technology, 57(46), 18225–18235. https://doi.org/10.1021/acs.est.3c04291.
MacArthur, E. (2013). Towards the circular economy.
Mallawaarachchi, H., Sandanayake, Y., Karunasena, G., & Liu, C. (2020). Unveiling the conceptual development of industrial symbiosis: Bibliometric analysis. Journal of Cleaner Production, 258, 120618. https://doi.org/10.1016/j.jclepro.2020.120618.
Misrol, M. A., Wan Alwi, S. R., Lim, J. S., & Manan, Z. A. (2021). An optimal resource recovery of biogas, water regeneration, and reuse network integrating domestic and industrial sources. Journal of Cleaner Production, 286, 125372. https://doi.org/10.1016/j.jclepro.2020.125372.
Misrol, M. A., Wan Alwi, S. R., Lim, J. S., & Manan, Z. A. (2022). Optimising renewable energy at the eco-industrial park: A mathematical modelling approach. Energy, 261, 125345. https://doi.org/10.1016/j.energy.2022.125345.
Neves, A., Godina, R., Azevedo, S. G., & Matias, J. C. O. (2020). A comprehensive review of industrial symbiosis. Journal of Cleaner Production, 247, 119113. https://doi.org/10.1016/j.jclepro.2019.119113.
Okoli, C. (2015). A Guide to Conducting a Standalone Systematic Literature Review. Communications of the Association for Information Systems, 37. https://doi.org/10.17705/1CAIS.03743.
Pakere, I., Gravelsins, A., Lauka, D., & Blumberga, D. (2021). Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 3, 100023. https://doi.org/10.1016/j.segy.2021.100023.
Piontek, F. M., Herrmann, C., & Saraev, A. (2021). Steps from Zero Carbon Supply Chains and Demand of Circular Economy to Circular Business Cases. European Journal of Social Impact and Circular Economy, 1-9 Paginazione. https://doi.org/10.13135/2704-9906/5712.
Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, 9(1), 12. https://doi.org/10.3390/publications9010012.
Prieto-Sandoval, V., Mejia-Villa, A., Jaca, C., & Ormazabal, M. (2022). The Case of an Agricultural Crop Business Association in Navarra as Circular Economy Intermediary. Circular Economy and Sustainability, 2(2), 713–729. https://doi.org/10.1007/s43615-021-00116-y.
Raciti, A., Dugo, G., Piccione, P., Zappalà, S., & Martelli, C. (2019). A new sustainable product in the green building sector: The use of sicilian orange peel waste as high performance insulation. Procedia of Environmental Science, Engeneering and management, 6(2), 229–235.
Raimondo, M., Di Rauso Simeone, G., Coppola, G. P., Zaccardelli, M., Caracciolo, F., & Rao, M. A. (2023). Economic benefits and soil improvement: Impacts of vermicompost use in spinach production through industrial symbiosis. Journal of Agriculture and Food Research, 14, 100845. https://doi.org/10.1016/j.jafr.2023.100845.
Ranjbari, M., Saidani, M., Shams Esfandabadi, Z., Peng, W., Lam, S. S., Aghbashlo, M., Quatraro, F., & Tabatabaei, M. (2021). Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. Journal of Cleaner Production, 314, 128009. https://doi.org/10.1016/j.jclepro.2021.128009.
Re, B., Bottini, L., Ricci, C., Bottini, G., & Strauss, D. (2023). The transition from a “city of waste” to a “circular city”: Virtuous practices in the city of Pavia. European Journal of Social Impact and Circular Economy, 1-16 Pages. https://doi.org/10.13135/2704-9906/7691.
Ruiz, M., & Diaz, F. (2022). Life Cycle Sustainability Evaluation of Potential Bioenergy Development for Landfills in Colombia. Environmental and Climate Technologies, 26(1), 454–469. https://doi.org/10.2478/rtuect-2022-0035.
Ruiz-Puente, C., & Jato-Espino, D. (2020). Systemic Analysis of the Contributions of Co-Located Industrial Symbiosis to Achieve Sustainable Development in an Industrial Park in Northern Spain. Sustainability, 12(14), 5802. https://doi.org/10.3390/su12145802.
Sadraei, R., Biancone, P., Lanzalonga, F., Jafari‐Sadeghi, V., & Chmet, F. (2023). How to increase sustainable production in the food sector? Mapping industrial and business strategies and providing future research agenda. Business Strategy and the Environment, 32(4), 2209–2228. https://doi.org/10.1002/bse.3244.
Saeli, M., Capela, M. N., Piccirillo, C., Tobaldi, D. M., Seabra, M. P., Scalera, F., Striani, R., Corcione, C. E., & Campisi, T. (2023). Development of energy-saving innovative hydraulic mortars reusing spent coffee ground for applications in construction. Journal of Cleaner Production, 399, 136664. https://doi.org/10.1016/j.jclepro.2023.136664.
Sellitto, M. A., Murakami, F. K., Butturi, M. A., Marinelli, S., Kadel Jr., N., & Rimini, B. (2021). Barriers, drivers, and relationships in industrial symbiosis of a network of Brazilian manufacturing companies. Sustainable Production and Consumption, 26, 443–454. https://doi.org/10.1016/j.spc.2020.09.016.
Sheppard, P., Garcia-Garcia, G., Angelis-Dimakis, A., Campbell, G. M., & Rahimifard, S. (2019). Synergies in the co-location of food manufacturing and biorefining. Food and Bioproducts Processing, 117, 340–359. https://doi.org/10.1016/j.fbp.2019.08.001.
Sun, L., Fujii, M., Li, Z., Dong, H., Geng, Y., Liu, Z., Fujita, T., Yu, X., & Zhang, Y. (2020). Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city. Technological Forecasting and Social Change, 151, 119853. https://doi.org/10.1016/j.techfore.2019.119853.
Tan Yue Dian, Lim Jeng Shiun, & Wan Alwi Sharifah Rafidah. (2021). Cooperative Game-Based Business Model Optimisation for a Multi-Owner Integrated Palm Oil-Based Complex. Chemical Engineering Transactions, 88, 409–414. https://doi.org/10.3303/CET2188068.
Taqi, H. M. M., Meem, E. J., Bhattacharjee, P., Salman, S., Ali, S. M., & Sankaranarayanan, B. (2022). What are the challenges that make the journey towards industrial symbiosis complicated? Journal of Cleaner Production, 370, 133384. https://doi.org/10.1016/j.jclepro.2022.133384.
Teh, K. C., Lim, S. C., Andiappan, V., & Chew, I. M. L. (2021). Evaluation of Palm Oil Eco-Industrial Park Configurations: VIKOR with Stability Analysis. Process Integration and Optimization for Sustainability, 5(2), 303–316. https://doi.org/10.1007/s41660-021-00168-5.
Wadström, C., Johansson, M., & Wallén, M. (2021). A framework for studying outcomes in industrial symbiosis. Renewable and Sustainable Energy Reviews, 151, 111526. https://doi.org/10.1016/j.rser.2021.111526.
Wahrlich, J., & Simioni, F. J. (2019). Industrial symbiosis in the forestry sector: A case study in southern Brazil. Journal of Industrial Ecology, 23(6), 1470–1482. https://doi.org/10.1111/jiec.12927.
Wang, S., Lu, C., Gao, Y., Wang, K., & Zhang, R. (2019). Life cycle assessment of reduction of environmental impacts via industrial symbiosis in an energy-intensive industrial park in China. Journal of Cleaner Production, 241, 118358. https://doi.org/10.1016/j.jclepro.2019.118358.
Wijeyekoon, S., Suckling, I., Fahmy, M., Hall, P., & Bennett, P. (2021). Techno‐economic analysis of tannin and briquette co‐production from bark waste: A case study quantifying symbiosis benefits in biorefinery. Biofuels, Bioproducts and Biorefining, 15(5), 1332–1344. https://doi.org/10.1002/bbb.2246.
Xue, X., Wang, S., Chun, T., Xin, H., Xue, R., Tian, X., & Zhang, R. (2023). An integrated framework for industrial symbiosis performance evaluation in an energy-intensive industrial park in China. Environmental Science and Pollution Research, 30(14), 42056–42074. https://doi.org/10.1007/s11356-023-25232-0.
Yazan, D. M., & Fraccascia, L. (2020). Sustainable operations of industrial symbiosis: An enterprise input-output model integrated by agent-based simulation. International Journal of Production Research, 58(2), 392–414. https://doi.org/10.1080/00207543.2019.1590660.
Yeşi̇lkaya, M., Daş, G. S., & Türker, A. K. (2020). A multi-objective multi-period mathematical model for an industrial symbiosis network based on the forest products industry. Computers & Industrial Engineering, 150, 106883. https://doi.org/10.1016/j.cie.2020.106883.
Yu, H., Da, L., Li, Y., Chen, Y., Geng, Q., Jia, Z., Zhang, Y., Li, J., & Gao, C. (2023). Industrial symbiosis promoting material exchanges in Ulan Buh Demonstration Eco-industrial Park: A multi-objective MILP model. Journal of Cleaner Production, 414, 137578. https://doi.org/10.1016/j.jclepro.2023.137578.
Zabaniotou, A., & Vaskalis, I. (2023). Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis. Energies, 16(2), 593. https://doi.org/10.3390/en16020593.
Zhang, Y., Zheng, H., Chen, B., Su, M., & Liu, G. (2015). A review of industrial symbiosis research: Theory and methodology. Frontiers of Earth Science, 9(1), 91–104. https://doi.org/10.1007/s11707-014-0445-8.
Zhang, Q., Xiang, T., Zhang, W., Wang, H., An, J., Li, X., & Xue, B. (2022a). Co‐benefits analysis of industrial symbiosis in China’s key industries: Case of steel, cement, and power industries. Journal of Industrial Ecology, 26(5), 1714–1727. https://doi.org/10.1111/jiec.13320.
Zhang, X., Wang, Y., Wei, S., Dong, J., Zhao, J., & Qian, G. (2022b). Assessing the chlorine metabolism and its resource efficiency in chlor-alkali industrial symbiosis—A case of Shanghai Chemical Industry Park. Journal of Cleaner Production, 380, 134934. https://doi.org/10.1016/j.jclepro.2022.134934.