Pattern Matrix ^a								
Items	1	2	3	4	5	6	7	8
GP_2	.935							
GP_3	.935							
GP_4	.921							
GP_5	.891							
GP_1	.885							
SOCP_4		.946						
SOCP_3		.933						
SOCP_5		.909						
SOCP_2		.827						
SOCP_1		.756						
ECOP_4			.815					
ECOP_2			.768					
ECOP_3			.752					
ECOP_5			.730					
ECOP_6			.701					
ECOP_1			.560					
ENVP_3				.786				
ENVP_2				.748				
ENVP_1				.727				
ENVP_5				.703				
ENVP_4				.685				
IEM_2					.831			
IEM_4					.826			
IEM_1					.825			
IEM_3					.794			
CC_3						.796		
CC_4						.743		
CC_2						.711		
CC_1						.702		
IR_3							.747	
IR_2							.709	
IR_1							.705	
IR_4							.690	
ED_2								.740
ED_1								.697
ED_3								.668
ED_4								.625
Eigenvalue	5.346	4.509	3.811	3.306	2.567	2.362	2.074	2.030
Variance explained (%)	14.450	12.187	10.300	8.936	6.937	6.383	5.606	5.487
VIF	1.070	1.084	1.091	1.253	1.164	1.127	1.187	1.092
Cronbach's α	.962	.942	.865	.851	.891	.828	.805	.777

Appendix A: Technical Validation Details

Extraction Method: Principal Axis Factoring.

Rotation Method: Promax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Table 1. Exploratory factor analysis (EFA) results)

To determine the underlying structure of the constructs, exploratory factor analysis (EFA) with promax rotation was performed on a set of 42 items. The Kaiser-Meyer-Olkin (KMO) measure

(KMO =.817) and Bartlett's test of sphericity (χ^2 (666) = 7543.225, p <.001) confirmed the sampling adequacy and suitability of the data for factor analysis(J. Hair et al., 2019). An eight-factor solution was retained using a cut-off point of.40 and Kaiser's criterion (eigenvalue > 1), accounting for 62.12% of the total variance. Five items were excluded (IEM_5, IEM_6, ED_5, GP_6, and IR_5) due to low factor loadings and cross-loadings. The eight latent constructs demonstrated good reliability, with Cronbach's alpha coefficients ranging from 0.777 to 0.962. Notably, all the factor coefficients exceeded the recommended construct reliability threshold of 0.70, as suggested by Hair et al. (2019) and Morgan et al. (2019).