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Pietro Terna 

 
A COMPLEX LENS FOR ECONOMICS, OR: 

ABOUT ANTS AND THEIR ANTHILL 
 
 
 
 

1. Basics 
 
The complexity manifesto is mostly identified with Anderson’s paper More is different 
(1972), where we read:  
 

The reductionist hypothesis may still be a topic for controversy among philosophers, but among the 
great majority of active scientists I think it is accepted without questions. 

(…) The main fallacy in this kind of thinking is that the reductionist hypothesis does not by any 
means imply a “constructionist” one: The ability to reduce everything to simple fundamental laws does 
not imply the ability to start from those laws and reconstruct the universe. 

(…) The constructionist hypothesis breaks down when confronted with the twin difficulties of scale 
and complexity. The behavior of large and complex aggregates of elementary particles, it turns out, is 
not to be understood in terms of a simple extrapolation of the properties of a few particles. Instead, at 
each level of complexity entirely new properties appear, and the understanding of the new behaviors 
requires research which I think is as fundamental in its nature as any other. (p.393) 

 
This is the key starting point: the economic world is made of interconnected layers 
populated by more and more complicated agents (people, families, firms, banks, central 
banks, international institutions, multinationals, …). People make economies, but each 
of us is as far from understanding and controlling the economic system as a humble ant 
with respect to the anthill. Economics, as a science, has been simply ignoring that 
“detail” for about two hundred years. In Anderson’s words, complexity is the big trap 
generating the current paranoiac situation for which the crisis (2007-2012, at least) has 
no room in perfect models, but … it exists in the actual world. 

How to work with the lens of complexity? We need models, for us and … for the 
ants. 

From the wonderful list of foundational papers about complexity, which we can find 
at http://www.santafe.edu/library/foundational-papers-complexity-science, let us have 
a second basic reference, related to the model building perspective. In Rosenblueth and 
Wiener (1945), the founders of cybernetics, we read: 

 
A material model is the representation of a complex system by a system which is assumed simpler 

and which is also assumed to have some properties similar to those selected for study in the original 
complex system. 

(…) Material models are useful in the following cases. a) They may assist the scientist in replacing a 
phenomenon in an unfamiliar field by one in a field in which he is more at home.  

(…) b) A material model may enable the carrying out of experiments under more favorable 
conditions than would be available in the original system. (p. 317) 
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Being cybernetics a root of all our contemporary work in complexity and agent-based 

simulation, it is important to underline the analogy between the “material model” above 
and the artificial artifact we can construct in a computational system, so as to examine 
our problems in a closer way, while we are also studying them in a theoretical way. 

Why is this more and more important in social sciences and economics? 
 
 

2. A historical perspective 
 

A sound reply can be found in a historical perspective (where history can be also 
contemporary). I had the privilege of being the co-editor, with David Lane, of a special 
issue of the journal History of Economic Ideas (Lane and Terna, 2010), devoted to 
Complexity and the Organization of Economic Life. 

I extract from there some references to the historical paths of the complexity ideas. I 
owe this wonderful quotation from Keynes to Marchionatti’s paper (2010): 

 
Professor Planck, of Berlin, the famous originator of the Quantum Theory, once remarked to me 

that in early life he had thought of studying economics, but had found it too difficult! Professor Planck 
could easily master the whole corpus of mathematical economics in a few days. He did not mean that! 
But the amalgam of logic and intuition and the wide knowledge of facts, most of which are not precise, 
which is required for economic interpretation in its highest form is, quite truly, overwhelmingly difficult 
for those whose gift mainly consists in the power to imagine and pursue to their furthest points the 
implications and prior conditions of comparatively simple facts which are known with a high degree of 
precision.(Keynes [1924], Collected Writings, X, 1972, 158n) 

 
Again, what appears here is the opposition between the material model (the artifact of 
the system) that we need to build taking into account randomness, heterogeneity, and 
continuous learning in repeated trial and error processes, and the “simple” theoretical 
model. 

What kind of theoretical models? Not a too simplistic one: following Louçã (2010), 
already in the work of important economists of the last part of the nineteenth century 
we clearly have:  

 
(…)  some cases of revolt against such (note: too mechanical) paradigm that turned out to be early 

intuitions of complexity and emergence in economics. Without the mathematical and conceptual tools 
of complex systems and even as ignorant as they were of non-linear systems, these economists voiced 
their doubts, hesitations or critiques against the mainstream and, in most cases, did so looking at the 
frontier between economics and other sciences, physics or biology, the most fashionable inventors of 
modern science. These frontiers became the place to vindicate a new strategy for economics. 

 
Finally, quoting Arthur (2010), the construction of our material model has to take into 
account the cognitive side of the agents. From the season of early innovation at the 
Santa Fe Institute, 

(…) a second theme that emerged was that of making models based on more realistic cognitive 
behavior. Neoclassical economic theory treats economic agents as perfectly rational optimizers. This 
means among other things that agents perfectly understand the choices they have, and perfectly assess 
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the benefits they will receive from these. If there is uncertainty, they evaluate it probabilistically, revise 
their evaluations in the light of new information, and choose the course of action that maximizes their 
expected utility. Where there are multiple parties involved, each agent is usually assumed to have 
common knowledge about the others’ possible choices and assessments of these. Our approach, by 
contrast, saw agents not as having perfect information about the problems they faced, or as generally 
knowing enough about other agents’ options and payoffs to form probability distributions over these. 
This meant that agents need to cognitively structure their problems—as having to “make sense” of 
their problems, as much as solve them. 

 
In contemporary terms, following Holt et al. (2010), we move closer to material models 
if we take into account also the details of complexity: 

 
Since the term complexity has been overused and over hyped, we want to point out that our vision 

is not of a grand complexity theory that pulls everything together. It is a vision that sees the economy 
as so complicated that simple analytical models of the aggregate economy—models that can be 
specified in a set of analytically solvable equations—are not likely to be helpful in understanding many 
of the issues that economists want to address. Thus, the Walrasian neo-classical vision of a set of 
solvable equations capturing the full interrelationships of the economy that can be used for planning 
and analysis is not going to work. Instead, we have to go into the trenches, and base our analysis on 
experimental and empirical data. From there we build up, using whatever analytic tools we have available. 
This is different from the old vision where economists mostly did the opposite of starting at the top 
and then built down. (p. 5) 

 
Technically, with Holt et al. (2010), we can remember Simon (1962): 

 
Roughly by a complex system I mean one made up of a large number of parts that interact in a non 

simple way. In such systems, the whole is more than the sum of the parts, not in an ultimate 
metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the 
laws of their interaction, it is not a trivial matter to infer the properties of the whole. In the face of 
complexity, an in-principle reductionist may be at the same time a pragmatic holist. (p. 267) 

 
 

3. Moving to models 
 

We can now move to models: the material models of the founders of cybernetics, or the 
computational artifacts of the agent-based simulation perspective. 

Following Ostrom (1988) and, to some extent, Gilbert and Terna (2000), in the social 
sciences we traditionally build models as simplified representations of reality in two 
ways: (i) verbal argumentation and (ii) mathematical equations, typically using statistics 
and econometrics. The first way (i) is absolutely flexible and adaptable, as in the case of a 
historical book reporting an analysis of past events; but mere descriptions and 
discussions, by their nature, preclude tests and verifications of hypotheses. In contrast, 
the second way (ii) allows for computations and verifications, but suffers from severe 
limitations in flexibility and adaptation, especially with respect to how agents are 
expected to operate within the model and when accounting for their heterogeneity and 
interactions. 

There is a third way to build models, (iii) computer simulation, especially when agent-
based. Computer simulation can combine the extreme flexibility of a computer code – 
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where we can create agents who act, make choices, and react to the choices of other 
agents and to modification of their environment – and its intrinsic computability. This 
allows us to use jointly the descriptive power of verbal argumentation and the ability to 
calculate the effects of different situations and hypotheses. From this perspective, the 
computer program is a form of mathematics. In addition, from our models we can 
generate time series and analyze them by employing statistics and econometrics. 

However, reality is intrinsically agent-based (ourselves or … the ants), not equation-
based (for a short, but illuminating discussion of this consideration, see Weinberg [2002] 
in his review of Wolfram’s book, A New Kind of Science). At first glance, this is a strong 
criticism. Why reproduce social structures in an agent-based way, following (iii), when 
science applies (ii) to describe, explain, and forecast reality, which is, per se, too 
complicated to be understood? 

The first reply is that, with agent-based models and simulation, we can produce 
artifacts of actual systems and “play” with them, i.e., by showing the consequences of 
perfectly known ex-ante hypotheses and agents’ behavioral designs and interactions; 
then we can apply statistics and econometrics to the outcomes of the simulation and 
compare the results with those obtained by applying the same tests to actual data. In this 
view, simulation models act as a sort of magnifying glass that may be used to better 
understand reality. 

Considering the analysis of agent-based simulation models as a source of knowledge, 
there is another “third view” of these kinds of tools. In Axelrod and Tesfatsion (2005): 

 
Simulation in general, and ABM in particular, is a third way of doing science in addition to 

deduction and induction. Scientists use deduction to derive theorems from assumptions, and induction 
to find patterns in empirical data. Simulation, like deduction, starts with a set of explicit assumptions. 
But unlike deduction, simulation does not prove theorems with generality. Instead, simulation generates 
data suitable for analysis by induction. Nevertheless, unlike typical induction, the simulated data come 
from a rigorously specified set of assumptions regarding an actual or proposed system of interest rather 
than direct measurements of the real world. Consequently, simulation differs from standard deduction 
and induction in both its implementation and its goals. Simulation permits increased understanding of 
systems through controlled computational experiments. 

 
The considerations above act in a way similar to abductive reasoning, or inference to the 
best explanation, where one chooses the hypotheses that, if true, give the best 
explanation for the actual evidence. Note that in the agent-based model perspective, the 
hypotheses are also related to the rule that determines the behavior of the agents. 

The second reply is that, relying again on Anderson (1972), we know that complexity 
arises when agents or parts of a whole act and interact, and the quantity of involved 
agents is relevant. Furthermore, following Villani (2006), “Complex systems are systems 
whose complete characterization involves more than one level of description” (p. 51). 
Therefore, in order to manage complexity, one needs to build models of agents. As a 
stylized example, consider ants and an anthill: Two levels need to be studied 
simultaneously to understand the (emergent) dynamic of the anthill based on the 
(simple) behaviors of the ants. 

We can also imagine building models based on multiple layers of agents, where the 
agents of each layer compose – in a collective sense – the more complicated agents of 
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the upper stratum. Here, each layer could be considered to be a swarm, which is also the 
name of the first standardized tool used to build this kind of models, i.e., Swarm, from 
the Santa Fe Institute (Minar et al., 1996). 

This interpretation of the agent-based paradigm corresponds to the “second use – 
partially soluble models: artificial agents as complementary to mathematical theorizing –
” and to the “third use – models ostensibly intractable or provably insoluble: agent 
computing as a substitute for analysis” considered in Axtell (2000). Axtell’s first use 
occurs “when models can be formulated and completely solved: agent models as 
classical simulation.” 

The first use quoted above is mainly related to Monte Carlo simulations and to 
numerical solutions of equation models. The second use relates to the cases of existing 
equilibria that can be: incomputable; not attainable by bounded rational agents; known 
only for simple network configurations; less interesting than transition phases, 
fluctuations, and extreme events. The third use is related to intractable models (my 
addendum to Axtell’s considerations) when we believe that agents should be able to 
develop self-generated behavioral rules. 

After this positive introduction, we have anyway to note that agent-based simulation 
models have severe weaknesses, primarily arising from: 

(d) The difficulty of fully understanding them without studying the program used to 
run the simulation; 

(e) The necessity of carefully checking computer codes to prevent the generation of 
inaccurate results from coding errors. As Epstein and Axtell (1994) pointed out, it is 
necessary to develop new ways to control software and avoid bugs. In addition, thanks 
to the object-oriented structure that is intrinsic to agent-based programs, it is also 
possible to create a class of internal agents charged with observing the behavior of the 
actual agents of the simulation and with reporting anomalies. Anomalies that can be 
interesting to analyze and do not necessarily always arise from errors, but it is necessary 
to carefully explore that possibility. If an accounting procedure produces strange results, 
the users search for an error; if a simulation program produces anomalous results, the 
user may have discovered an interesting new result, that can emerge too … from a 
coding error; 

(f) The difficulty of systematically exploring the entire set of possible hypotheses in 
order to infer the best explanation, in accordance with the previously introduced 
perspective of abductive reasoning. This is mainly due to the inclusion of behavioral 
rules for the agents within the hypotheses, with a space of possibilities that is difficult if 
not impossible to explore completely. 

The difficulty of communicating the results, which is implied in (a), can be overcome 
by the diffusion of standardized tools to develop agent simulation models and by the 
introduction of a protocol to be applied to those tools. The first example, introduced in 
the mid-1990s (Minar et al., 1996), is Swarm (www.swarm.org), a project that started 
within the Santa Fe Institute, but then grew independently. Swarm was not a program in 
the classic sense, but a library of functions to build agent-based computer models. More 
specifically, it was a library of particular functions that are useful in the handling of a 
collection of agents, populating spaces or organizing events in time. Swarm has been a 
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milestone in simulation, thanks to the protocol suggested for using those functions, 
combining them with its own code written in Objective C (a language combining C and 
SmallTalk); successively, also Java has been added as connective code. The Swarm 
development team’s original purpose was to create a lingua franca for agent-based model 
development; that goal has only been partially achieved if one considers only the library 
of functions. With modern languages such as Python, a large part of the Swarm library is 
now unnecessary, thanks to the tools offered natively by the language itself. On the 
contrary, when considering the protocol defined within the project, Swarm has been 
highly successful, since that protocol is intrinsically the basis of several recent tools. For 
interesting considerations on the use of Python in agent-based programming, one should 
refer to Isaac (2008, 2011) and for an application of the Swarm protocol to Python, one 
should see SLAPP.1 

Many other tools have been built upon the Swarm legacy, such as Repast, Ascape, 
JAS, and now SLAPP. Important tools, such as NetLogo and StarLogo, use partially 
different protocols, but always with links to the Swarm one. StarLogo TNG is a recent 
innovative version of StarLogo. We program it by moving on the screen small 
differently shaped cards, as in a jigsaw puzzle. A second important innovation of 
StarLogo TNG is the capability for generating animations very similar to video games, 
easily understood. 

We can deal with the second weakness introduced in (b), i.e., the risk of using codes 
with “bugs” that corrupt the results, both by employing the standard tools reported here 
(but this is in some way insufficient) and by duplicating the code using independent 
tools programmed by different scholars. The result is never the same, due mainly to the 
use of random numbers when determining sequences. However, if the emergent 
phenomena are substantially similar in both constructions, we can be reasonably sure 
that the results are not the consequence of coding errors. This significantly heavy work 
is suggested for important and critical applications. 

The third weakness, that described in (c), i.e., the difficulty of exploring the whole set 
of possible hypotheses (including the behavioral rules of the agents, where the full 
rationality and perfect information hypotheses represent only one of the possible 
choices and not the more plausible) is determined by the dimension of the space of 
possibilities. When analyzed in a detailed way, this space is necessary for computations 
where no black boxes are allowed, but it generates an unmanageable set of possible 
paths. As a reply, we can propose the use of neural networks so as to memorize 
behavioral choices in an automatic way, using the reinforcement of learning to extract 
the same rules from experience, via a trial and error procedure. In this way, we can move 
from the wide search of hypotheses about behavior to a procedure to calculate artificially 
generated, but plausible, rules. We find something close to this idea in an application 
related to NetLogo, using genetic algorithms to explore the space of the parameters: 
http://behaviorsearch.org. 

Generating behavioral rules to achieve the capability for emulating cognition is 
anyway a step that is both highly difficult and challenging. Consider Sun (2006): 

 
                                                 
1 Swarm Like Agent Protocol in Python at http://eco83.econ.unito.it/terna/slapp/. 
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What makes computational social simulation, especially computational cognitive social simulation 
(based on detailed models of cognitive agents), different from the long line of social theories and 
models (such as utility theory and game theory) includes the fact that it enables us to engage with 
observations and data more directly and test various factors more thoroughly. In analogy with the 
physical sciences (…), good social theories may be produced on the basis of matching theories with 
good observations and data. Cognitive agent based computational social simulation enables us to 
gather, organize, and interpret such observations and data with cognition in mind. Thus, it appears to 
be a solid means of developing social–cognitive theories. (p. 17)  

 
As a comment, let us quote Lave and March (1975): “The best way to learn about model 
building is to do it” (p. 10). 

 
 

4. Moving to computation 
 

Finally is the importance of calculating: our complex system models live mainly in their 
computational phase and require more and more powerful calculating facilities. 

 
 
Schelling’s model and random mutations 

Schelling verified the well-known segregation model by moving dimes and pennies on a 
board. The emergence of segregation, due to the desire of each kind of agent to be 
surrounded by a given quota of similar beings, can be simulated in any way, also with 
paper and pencil,2 as in Fig.1. 

 

     
 

Fig.1 – You do not need a computer here … 
 
However, if you want to check the survival of the segregation islands in the presence 

of random mutations in agents (from an idea of Nigel Gilbert), as in Fig. 2, you need to 
use a computer and a simulation tool (NetLogo in this case, see above). 

 

                                                 
2 These pictures are from a presentation of Eileen Kraemer, 
http://www.cs.uga.edu/~eileen/fres1010/Notes/fres1010L4v2.ppt. 
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Fig. 2 – Survival of segregation islands with random mutation in the Schelling model population. 
 
 
Swarm HeatBugs model and different agents’ preferences 

In the case of the test model of Swarm (see above), the so called HeatBugs model, you 
can have agents with a preference for high temperature; moving, they generate warmth ; 
when they are comfortable, they reduce movement; alternatively, some of them can have 
a preference for low temperature. You have to make a lot of computations to obtain the 
first and the second emergent results of Fig. 3. 

 

     
 
Fig.3 – Emerging isles of agents comfortable with a warm habitat … or same result but with unhappy 

agents moving around searching for a cold habitat. 
 
 
Learning chameleons 

In Terna (2009a, 2009b) you can find, finally, agents requiring a lot of computational 
capability for learning and behaving. They are chameleons that change color when they 
get in touch with another one of a different color; they can learn strategies, via trial and 
error procedures, to avoid that event, as in Fig. 4. 
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Fig. 4- The chameleons: on the left, acting randomly and, 
on the right, learning to survive (the red ones). 

 
We can “play” on line with this model at http://goo.gl/MpS9F. 

 
 

5. A tentative conclusion 
 

Complexity, as a tool to understand reality in economics, comes from a strong 
theoretical path of epistemological development; to be widely accepted, however, it still 
requires a significant step ahead of the tools we use to make computations about this 
class of models, with sound protocols, easy interfaces, learning tools, computational 
facilities … but it also requires a deep and humble acceptation of the idea that each of us 
is as far from understanding and controlling the economic system as an ant is with 
respect to the anthill. 
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