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Preface

This second issue of the newborn Journal of
Approximation Software is dedicated to the
70th birthday and the retirement of Len Bos.
Though software has not been the main scien-
tific interest of Len, he has worked on many
codes and has inspired directly or indirectly a
lot of numerical software in the framework of
polynomial, rational, trigonometric and RBF
approximation.

The present contributions range from ap-
proximation on the sphere to complex poly-
nomial approximation, multinode Shepard ap-
proximation by scattered data, and to exponen-
tial integrators for optimal control problems.
In the spirit of the journal, the papers describe
the theory behind the methods and use of the
codes, which are freely available on Github.
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Abstract

This paper addresses the idea of the applicability of mathematics, using, as a case study,
a construction and software package that partition the unit sphere into regions of equal area.
The paper assesses the applicability of this construction and software by examining citing
works, including papers, dissertations and software.
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1 Introduction
The unreasonable effectiveness of mathematics? A well known paper by Wigner [139]
claims that there is something mysterious or even miraculous about the appropriateness of
mathematics as a language for describing nature . . .

The miracle of the appropriateness of the language of mathematics for the formu-
lation of the laws of physics is a wonderful gift which we neither understand nor
deserve. We should be grateful for it and hope that it will remain valid in future
research and that it will extend, for better or worse, to our pleasure even though
perhaps also to our bafflement, to wide branches of learning. [139]

Hamming [54] make some attempts at explanation, but comes to a similar conclusion to
Wigner . . .

Some partial explanations . . .

1. We see what we look for.
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2. We select the kind of mathematics to use.

3. Science in fact answers comparatively few problems.

4. The evolution of man provided the model.

. . . From all this I am forced to conclude both that mathematics is unreasonably
effective and that all of the explanations I have given when added together simply
are not enough to explain what I set out to account for. . . . The logical side of the
nature of the universe requires further exploration. [54]

On the other hand, Arnold [7] and Borovik [15] quote Gelfand’s assertion that mathematics
is unreasonably ineffective in biology.

Arnold [7]:

Here we can add a remark by I.M. Gel’fand: there exists yet another phenomenon
which is comparable in its inconceivability with the inconceivable effectiveness
of mathematics in physics noted by Wigner – this is the equally inconceivable
ineffectiveness of mathematics in biology.

Borovik: [15]:

This paper is an attempt to answer the question

Should we accept Israel Gelfand’s assessment of the role of mathematics
in biology?

And my answer is

Yes, we should, for the time being: mathematics is still too weak for
playing in biology the role it ought to play.

So what makes mathematics effective or ineffective in applications, and is the effectiveness
or ineffectiveness reasonable or unreasonable?

A more pragmatic approach. The practice of applied mathematics usually takes a more
pragmatic approach, especially when dealing with models and approximations. In scientific
modelling, it is often stated that “All models are wrong but some are useful” [20], meaning that
a completely faithful model may be unattainable, but it may be possible to build a parsimonious
model that reflects the key phenomena or most important aspects of the system being modelled.

Much can and has been said about the construction of models of systems that are both fit
for purpose and mathematically tractable [89]. Modelling often involves approximation, in the
sense of neglecting some aspects of the systems, and idealization, that is making strictly incor-
rect assumptions that still preserve the important aspects to be understood [90, 102, 116]. The
processes of approximation and idealization may then result in a model that can be described
by known or at least constructable mathematics. The final step for a predictive model would
then be to ensure that the mathematical formulation is tractable, in the sense that it results in a
reasonable trade-off between computational effort and accuracy [1, 10, 115, 130].

Models also often involve approximations in the mathematical sense of the word. The ap-
proximation of functions from noisy and incomplete data [9], and the approximate solution of
underdetermined systems of equations [63], including the solution of differential or integral
equations with noisy and incomplete initial data, has long been a subject of study in statis-
tics, applied mathematics, and machine learning. The subject of approximation theory deals
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with the best approximation within a function space [131], and the theory of information-based
complexity explicitly deals with the inherent trade-off between the cost of function evaluation
versus the error in approximation [130, 143]. It is therefore usually the case that a new approx-
imation method, algorithm or construction is accompanied by an analysis of its applicability to
known abstract problems, often in terms of its asymptotic cost versus rate of convergence with
respect to approximation error within a known setting (e.g. [25]).

A case study. This paper examines the applicability of a geometric construction: an equal
area partition of a unit higher-dimensional sphere, and its associated distribution of points. The
construction is described in a 2006 paper published in Electronic Transactions on Numerical
Analysis [74], and is analyzed in more detail in a PhD thesis of 2007 [75], a paper of 2009 [76]
and follow-up papers [77, 81]. As at 20 August 2024, the 2006 paper [74] has 346 citations
listed in Google Scholar, 224 citations in Scopus, 179 in Web of Science, and 43 in MathSciNet.

Citations appear in Geophysical Journal International, Global Change Biology, IEEE Trans-
actions on Audio Speech and Language Processing, Journal of Approximation Theory, Jour-
nal of the Atmospheric Sciences, Journal of Computational Chemistry, Journal of Differential
Equations, Mathematics of Computation, Radio Science, RNA Journal, and elsewhere.

Note: some of the papers described below are accompanied by abbreviated 20 August 2024
citation counts of the form (G: g, S: s, W: w, M: m), for the Google Scholar, Scopus, Web of
Science, and MathSciNet counts respectively. For example, the abbreviated counts for the 2006
paper [74] are (G: 346, S: 224, W: 179, M: 43).

The citations of the 2006 paper, the 2007 thesis, and the follow-up papers are generally of
three types:

1. Application of the constructions to specific problems;

2. Evaluation of the constructions described by the paper, including comparisons with other
constructions; and

3. Passing mention of the paper, sometimes with a short description.

This paper is mostly concerned with the first two types of citations.

2 Preliminaries

2.1 Some related problems
The problem of finding an equally distributed set of N points on a circle is solved easily: just
use points arranged uniformly at an angle of N

2π
. In contrast, on a unit sphere Sd ⊂ Rd+1 with

d > 1, not only is the problem harder to solve, it is harder to pose precisely. There are a number
of related problems, each of which gives rise to a different sense of equal distribution [14, 119].
These problems are often stated in terms of sequences of spherical codes, where each spherical
code is a finite set of N points on the unit sphere Sd , and we are often interested in some
asymptotic value related to each sequence as N goes to infinity.

Asymptotic equidistribution in measure and related quadrature problems. Find a se-
quence of spherical codes that converges to the uniform distribution in the sense of convergence
in measure (Figure 1). Such convergence is usually defined in terms of a discrepancy such as
the spherical cap discrepancy [23, 46, 142]. If the spherical cap discrepancy of the spherical
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codes in the sequence converges to zero, then the sequence is said to be asymptotically uni-
formly distributed [119], or asymptotically equidistributed [28, 92], or weak-star convergent
[75, Definition 2.11.3].

Figure 1: Brauchart, “Spherical Fibonacci lattices,” [24].

Interpolation and related function approximation problems. Find a sequence of spherical
codes such that a function approximation within a certain function space converges at a certain
rate. Examples are Lagrange polynomial interpolation within continuous function spaces [6,
16, 141] and least squares approximation within L∞ [61, 62, 123, 129] (Figure 2).

Figure 2: Themistoclakis and Van Barel, “Examples of the tensor product Gauss–Legendre
quadrature nodes related to degrees of precision 31 and 51, i.e., having N = 512 (left) and
N = 1352 (right) points,” [129].

The Thomson and related energy minimization problems. Minimize the energy of N
equally charged particles on a sphere, with respect to some potential (Figure 3).

The Tammes problem and packing of spherical caps. Given a fixed radius, how many non-
overlapping spherical caps with that radius can be placed onto a unit sphere (Figure 4)? This
radius is called the packing radius of the spherical code formed by the centres of the caps.

The covering problem. Given a fixed radius, how few overlapping spherical caps with that
radius are needed to cover a unit sphere (Figure 5)? This radius is called the covering radius or
mesh norm of the spherical code formed by the centres of the caps.
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Figure 3: Atschuler et al. “Lattice configurations for 132 (a) and 1032 (b) charges,” [5].

Figure 4: Dartmouth College Electron Microscope Facility, “A grain of pollen from Morning
Glory flowers,” [47].

Figure 5: Saff and Womersley, “Covering of a sphere with 169 equal spherical caps,” [118].

2.2 Some history
The history of constructions aimed at solving the problems posed in Section 2.1 is quite in-
volved. See also the 2019 book by Borodachov et al. [14, Chapters 6 and 7].

Equidistribution without separation. Many constructions for S2 yield an asymptotic equidis-
tribution, e.g. Hammersley, Halton, (t,s) etc. sequences mapped to the sphere [142] (Figure
6).

Separation without equidistribution. Hamkins [48] and Hamkins and Zeger [49] constructed
Sd codes with asymptotically optimal packing density (Figure 7).
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Figure 6: Wong and colleagues “Halton points with different bases on the sphere (n = 1000),”
[142].

Figure 7: Hamkins and Zeger, “The wrapped spherical code C Λ2
W (3;0 : 05),” [49].

Equal area partitions. Alexander [3] asserts the existence of a diameter bounded set of equal
area partitions of S2, sketching a construction based on the cubed sphere.

Stolarsky [126], Beck and Chen [11] and Bourgain and Lindenstrauss [17] each go on to
assert the existence of a diameter bounded set of equal area partitions of Sd without giving an
explicit construction.

Feige and Schechtman [41] describe a construction as part of an argument about the op-
timality of a solution of the Max-Cut problem in graph theory that can be modified into a
construction of a diameter bounded set of equal area partitions of Sd (Figure 8).

Figure 8: Leopardi. “Step 5 of the Feige-Schechtman construction” [41, 75].

The EQ(d,N) recursive zonal partition of the sphere Sd into N regions of equal area de-
scribed in [74] and analyzed in [75, 76] is based on Zhou’s 1994 construction for S2 [113, 148]
(Figure 9) as modified by Saff, and Sloan’s sketch of a partition of S3 [122] (Figure 10).
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Figure 9: Saff and Kuijlaars. “Partition of the sphere into 400 equal-area parts with diameters
≤ 7/

√
400” [119].

Figure 10: “Partition EQ(2,33)” [74].

The 2006 paper [74] describes the construction of the EQ(d,N) partition. The paper also
provides estimates and numerical examples of the maximum diameter of each region in each
partition of Sd into N regions for N ≤ 100 000 for d = 2,3,4, and also for N = 2k for k = 1 . . .10
and d = 1 . . .8. The maximum diameter is a good estimate for twice the covering radius.

The partition algorithm. The recursive zonal equal area partition algorithm is recursive in
dimension d. For d > 1 it uses the idea of a “collar” – an annulus on the sphere arranged
symmetrically about the North-South polar axis.

The 2006 paper [74] provides a detailed description of the partition algorithm EQ(d,N),
but a brief pseudocode description is

if N = 1 then

There is a single region which is the whole sphere;

else if d = 1 then
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Divide the circle into N equal segments;

else

Divide the sphere into zones, each the same area as an integer number of re-
gions:

1. Determine the colatitudes of polar caps,
2. Determine an ideal collar angle,
3. Determine an ideal number of collars,
4. Determine the actual number of collars,
5. Create a list of the ideal number of regions in each collar,
6. Create a list of the actual number of regions in each collar,
7. Create a list of colatitudes of each zone;

Partition each spherical collar into regions of equal area, using the recursive
zonal equal area partition algorithm for dimension d −1;

endif.

EQ(3,99) Steps 1 to 2

θ
c ∆
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Figure 11: Partition algorithm for EQ(3,99)

Figure 11 is an illustration of the algorithm for EQ(3,99), with step numbers corresponding
to the step numbers in the pseudocode.

Spherical codes from equal area partitions. The 2007 thesis [75] describes the partition in
more detail, describes the spherical codes EQP(d,N) consisting of a central point of each region
of EQ(d,N), and proves that the sequences of these codes are asymptotically equidistributed
for each d [75, Theorem 5.4.1] (Figure 12). Despite being unpublished, as at 20 August 2024
the thesis has 78 citations on Google Scholar.

Chapters 3 to 5 of the 2007 thesis also include the following statements, estimates and
numerical examples:
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Figure 12: “EQ code EQP(2,33), showing the partition EQ(2,33)” [75].

Chapter 3 contains estimates of the maximum diameter of each region, as per [74], with
proofs. Section 3.10 lists numerical results on the maximum diameter of regions, as per [74].

Section 4.2 includes an explanation of why the spherical codes are not good for Lagrange
polynomial interpolation, in terms of the condition number of the Gram matrix corresponding
to each polynomial degree (see also [141]). The section remarks that the Gram matrix is often
singular to machine precision, and also includes a statement and proof of the minimum poly-
nomial degree for which Lagrange interpolation must fail. Section 4.3 estimates the minimum
distance between code points, which is also a good estimate of twice the packing radius. Nu-
merical examples are given for d = 2,3,4 and N up to 20 000. Section 4.4 gives estimates
of the packing density, which is also related to the packing radius. This section also includes
numerical examples for d = 2,3,4 and N up to 20 000.

Section 5.4 includes estimates of the spherical cap discrepancy and the Riesz energy, with
numerical examples of the Riesz d−1 energy for d = 2,3,4 and N up to 20 000. Here the Riesz
s-energy of a finite set X ⊂ Sd of size N is defined as

Es(X ) =
1

N2 ∑
x∈X

∑
y∈X
y̸=x

∥x− y∥−s ,

using the usual Euclidean norm on Rd+1.

Matlab code. The Recursive Zonal Equal Area Sphere Partitioning Toolbox [73, 79, 80] is
a Matlab toolbox that was released in 2005 to accompany the paper [74] and PhD thesis [75].
The earlier history of the code, including the original Maple prototype, can be seen in the
CHANGELOG file [80]. The following remarks refer to the situation at 20 August 2024.

Google Scholar lists four citations to the toolbox, excluding self-citations [31, 30, 112, 133].
The SourceForge URL of the toolbox [73] is mentioned in 17 other theses and papers indexed
by Google Scholar [39, 55, 60, 69, 87, 88, 98, 109, 110, 112, 120, 124, 128, 132, 145, 144, 146],
excluding self-citations. Of these theses and papers only six [69, 109, 110, 112, 124, 128]
contain an attributed citation to the toolbox in their References section. Interestingly, one thesis
[144] and two papers [145, 146] mistakenly call the toolbox “EASP” and do not cite the author.
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The GitHub project for the toolbox [80] has 8 forks in GitHub, and is mentioned in one other
paper indexed by Google Scholar [120]. Code from the toolbox is also included in at least 10
other GitHub projects [42, 59, 64, 68, 70, 86, 101, 105, 134, 135]. Unfortunately, SourceForge
does not support code searches across its repositories, so the number of SourceForge projects
that include code from the toolbox remains unknown. The same is true for GitLab public
repository hosting.

The toolbox is also mentioned in the documentation for FERUM [18] but without at-
tribution. The Matlab source code for FERUM 4.1 [19] contains a subset of the toolbox
code. There is also a copy of the toolbox code at the Lamont-Doherty Earth Observatory
clifford.ldeo.columbia.edu web site [125].

2.3 Follow-up papers and generalizations
The 2009 paper [76], based on the 2007 thesis [75], proves diameter bounds for both the
EQ(d,N) sphere partition described in the 2006 paper [74], and a modified version of the
construction of Feige and Schechtman as described in the thesis. Citations: (G: 34, S: 0, W:
13, M: 11).

A 2013 paper [77], following the arguments in Chapter 5 of the 2007 thesis [75], shows
that a sequence of spherical codes with a well behaved upper bound on discrepancy and a well
behaved lower bound on separation, such as the sequence of EQP(d,N) codes, satisfies an
upper bound on the Riesz s-energy. Citations: (G: 21, S: 13, W: 12, M: 10).

A second 2013 paper [78] generalizes the paper [77] in the sense that it proves that, for
a smooth compact connected d-dimensional Riemannian manifold M, if 0 ≤ s ≤ d then an
asymptotically equidistributed sequence of finite subsets of M that is also well-separated yields
a sequence of Riesz s-energies that converges to the energy double integral. In this case, the
Riesz s-energy is defined using the geodesic distance on M. Citations: (G: 3, S: 0, W: 0, M: 0).

A 2017 joint paper with Gigante [45] generalizes the partition results of [75, 76] by com-
bining the Feige and Schechtman construction with David’s and Christ’s dyadic cubes to yield
a partition algorithm for connected Ahlfors regular metric measure spaces of finite measure.
Citations: (G: 33, S: 19, W: 18, M: 18).

A second 2017 joint paper with Sommariva and Vianello [81] proves that good covering
point configurations on the 2-sphere are optimal polynomial meshes, and extracts Caratheodory-
Tchakaloff submeshes for compressed least squares fitting. This implies that the point sets
generated by the construction of the 2006 paper [74] are optimal polynomial meshes. The pa-
per also provides numerical examples where submeshes based on these point sets are used to
construct positive weight quadrature rules. Citations: (G: 6, S: 4, W: 5, M: 1).

3 Evaluations and improvements

3.1 Evaluations
Many of papers citing the 2006 paper [74] and its related papers conduct one of two types of
evaluation:

1. They evaluate methods that use the constructions described in [74] against one or more
completely different methods as they apply to the problem being solved in the paper. This
type of evaluation is most frequently seen in applications oriented papers and is treated
in the Section 4.
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2. They evaluate the constructions described in [74] against similar constructions, especially
in relation to one or more of the related problems listed in Section 2.1. Some examples
of this type of evaluation follow.

A 2009 paper by Marantis and colleagues [91] compares three different point distributions
on S2, including EQP(2,N), by using test samples of 240 points and using them to reconstruct
a function defined by spherical harmonics up to degree 8: “it is subsequently sampled with the
three proposed sample point distributions and the pattern is reconstructed using the estimated
harmonic coefficients.” Unfortunately the paper does not explicitly state the reconstruction
method used. The EQP(2,240) reconstruction fails badly. The paper makes an attempt to
explain this.

A 2016 paper by Rachinger and colleagues [111] compares different “constellations” of
points on hyperspheres in a complex vector space. The case described in the paper is a hy-
persphere in C3, equivalent to the sphere S5 ⊂ R6. The EQP(5,64) and EQP(5,512) codes
are compared to constellations obtained via k-means clustering, potential minimization, and
per-antenna phase shift keying. Curiously, the paper calls the the EQP codes “EQPA con-
stellations.” The constellations are compared in terms of construction complexity, capacity,
minimum distance, and power efficiency: “. . . EQPA works in such a way that the distribution
of points becomes more and more uniform as the constellation size increases. This algorithm
profits from packing the hypersphere more densely.”

A related 2016 paper by Sedaghat and colleagues [121] compares the EQP codes to codes
created by spherical K-means clustering with respect to performance of a wireless commu-
nication scheme called Phase Modulation on the hypersphere: “. . . the codes obtained by the
spherical K-means algorithm have much better performance than the EQ codes. Note that EQ
codes have the advantage that they can be constructed much more easily than K-means codes.”

One of the most comprehensive comparisons of constructions for spherical codes on S2 is
found in the 2016 paper of Hardin, Michaels and Saff [55], which examines quadrature, energy,
packing and covering properties of a number of such constructions. The paper shows that the
EQ point sets generated by the construction described in [74] are not only equidistributed and
well-separated, but they also perform well with respect to energy, with numerical behaviour
comparable to empirically optimal point sets. For the logarithmic and Coulomb potentials, “the
generalized spiral and zonal equal area points perform the best of the algorithmically generated
points.” For the Riesz s-energy with s = 2, “the generalized spiral, zonal equal area, and equal
area icosahedral points perform the best.” For the Riesz s-energy with s = 3, “the equal area
icosahedral points outperform the spiral and zonal equal area points of the algorithmically
generated configurations. This is expected because their Voronoi decomposition is closest to
the regular hexagonal lattice.” For more detailed proofs, see the 2017 PhD thesis of Michaels
[96]. For more context, see the 2019 book by Borodachov and colleagues [14, Chapter 7].

3.2 Improvements
For the sphere S2 the diamond ensemble [12] is a construction for spherical codes resembling
the EQP(2,N) codes, where the code is constructed directly and not via an equal area partition.
Similarly to Zhou’s construction [113, 148] and the EQP(2,N) codes, the code points are dis-
tributed amongst the north and south poles and a small number of parallels of latitude. On each
parallel, the code points are equally spaced. Unlike Zhou’s construction and the EQP(2,N)
codes, the code points on each parallel are offset by a random angle, and the number of code
points per parallel are chosen to minimize the expected logarithmic energy. The diamond en-
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semble can then be used to construct an equal area partition similar to Zhou’s construction or
the EQ(2,N) partition [39].

The first paper [12] concentrates on logarithmic energy and cites Zhou’s construction. It
would be interesting to compare the results for logarithmic energy with the empirical loga-
rithmic energy of the EQP(2,N) codes, especially considering that the EQP(2,N) codes have
a non-random rotation offset on each parallel that maximizes the distance between the code
points on adjacent parallels [75, Section 4.1.2].

The second paper [39] examines spherical cap discrepancy and also cites the PhD thesis
[75], and the Matlab toolbox [79]. It is interesting to compare the proof of [39, Theorem 1.6]
on the upper bound for spherical cap discrepancy of the diamond ensemble with the proof of
[75, Theorem 5.4.1] on the same topic for the EQP(d,N) codes. As expected, the order of the
bound in both proofs coincides for d = 2. The latter proof involves general d > 1 rather than
just d = 2, but it uses a similar argument about the number of regions of an equal area partition
that contain the boundary of a spherical cap. See, for example, [39, Figure 3].

4 Some applications

Biology and medicine
Biochemistry. The 2009 paper by Chu and colleagues [27] investigates RNA folding by sim-
ulating two simple cases where two helices are joined by a non-helix segment. The methods
used in the paper include apparently using EQP(3,16000) to produce “8000 equally spaced
points on the upper half-sphere of the unit three-sphere S3 ⊂ R4, yielding a set of quaternions
that sampled the space of rigid body rotations SO(3) evenly.” (Figure 13).

Figure 13: Chu et al. “Visualization of 1000 randomly selected conformers observed in the
dPEG (A) and sPEG (B) simulations,” [27].

Medical imaging. The 2020 paper by Lazarus and colleagues [72] extends the “SPARKLING
(Spreading Projection Algorithm for Rapid K-space sampLING)” optimization algorithm for
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efficient compressive sampling patterns for 3D magnetic resonance imaging (MRI). The 3D
SPARKLING process uses the EQ(2,100) partition to arrange MRI shots in a trajectory. The
paper compares this process with two stacked SPARKLING processes and finds it to be inferior
to a variable density stacked SPARKLING process (Figure 14).

Figure 14: Lazarus et al. “3D SPARKLING process. A, Partition of the sphere into 100
regions of equal area. Regions along a constant elevation angle were highlighted in blue: they
are identical up to a rotation. B, One 3D density sector containing a SPARKLING shot. C,
The SPARKLING shot is then rotated along the considered latitude. D, the whole fully 3D
SPARKLING trajectory. An individual segment is highlighted in black. . . . ” [72].

Neurobiology. The 2020 paper by Das and Maharatna [29] presents an “end-to-end toolchain
that processes raw MRI data and generates network metrics for brain connectivity analysis
using non-anatomical equal-area parcellation.” The method presented in this paper is quite
involved, but includes steps that use the EQ(2,80) partition and EQP(2,80) spherical code:
“. . . we partition the spherical surface into equal sized areas by applying the equipartition algo-
rithm of unit sphere [74]. We create a list of centre points of all the equal partitioned areas of
unit sphere and scale them up to spherical surface . . . ” (Figure 15).

Climate and weather
Climate science. The 2018 paper by Werner and colleagues [138] presents “the first spatially
resolved and millennium-length summer (June–August) temperature reconstruction over the
Arctic and sub-Arctic domain (north of 60◦ N).”

The 2008 paper by Fauchereau and colleagues [40] applies Empirical Mode Decomposi-
tion (EMD) “in two dimensions over the sphere to demonstrate its potential as a data-adaptive
method of separating the different scales of spatial variability in a geophysical (climatolog-
ical/meteorological) field.” The paper uses the EQ(2,6500) partition and the EQP(2,6500)
spherical code (Figure 17).
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Figure 15: Das and Maharatna, “Raw MRI scans to parcellated segmented brain image,” [29].

Figure 16: Werner et al. “Distribution of input data. Length (fill of quadrilaterals) and first year
(coloured circles) of the regridded instrumental data. Symbols show the locations and type of
proxy data used (PAGES 2k Consortium, 2017). The reconstruction target area is all grid cells
marked with wire frames.”. [138].

Numerical weather prediction. Papers by Mozdzynski and others at the European Centre for
Medium Range Weather Forecasts (ECMWF) [32, 33, 99, 100, 137] describe the use of code
derived from the EQSP Matlab Toolbox [73] to balance the parallel load of the ECMWF In-
tegrated Forecasting System (IFS). The papers call this load balancing method EQ_REGIONS
partitioning (Figure 18).
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Figure 17: Fauchereau et al. “ERA 15 surface temperature long-term mean (1979–1993):
interpolated onto a zonal equal area partitioning of the sphere using 6500 points.” [40].

Figure 18: Mozdzynski et al. “EQ_REGIONS partitioning of grid-point space,” [99].

Geology and geophysics
Papers and theses describing applications in geology and geophysics include [4, 36, 35, 38, 50,
52, 51, 53, 58, 66, 93, 103, 104]. For example, the paper by Matsuyama and colleagues [93]
uses the EQ(2,400) partition to sample tectonic patterns on the moon (Figure 19). The paper
does not justify this choice of sampling method or estimate its accuracy.

The paper by Alken and colleagues [4] uses a robust Huber model based on 10 000 points
obtained via the EQP(2,10 000) spherical code as a component of the evaluation of models of
the Earth’s magnetic field.

The thesis by Domingos [38], and the papers by Hammer and colleagues [52, 51, 53] Istas
and colleagues [58], and Kloss and colleagues [66] use the EQP(2,300) or EQP(2,500) spher-
ical codes to locate either 300 points or 500 points around the Earth, and use these points to
locate geomagnetic virtual observatories (Figure 20). Each of these is effectively an approxi-
mate solution of the spherical cap packing problem.

Materials science
The 2021 paper by Sabiston and colleagues [117] presents and evaluates a micromechanics
model for use in the fatigue characterization of injection moulded carbon fibre. The microstruc-
ture is characterized in terms of the orientation of carbon fibres, as an orientation distribution
function (ODF). This function is approximated through the use of the EQ(2,1200) partition and
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Figure 19: Matsuyama et al. “a, Total fault segment length per unit area computed by sampling
the digitized fault segments in 400 equal area regions partitioned using the ‘igloo’ method
of Leopardi (2006). b-f, Absolute difference between the maximum and minimum principal
stresses (principal stresses difference), which quantifies the deviatoric stress, for a variety of
mechanisms combined with isotropic contraction . . . ” [93].

Figure 20: Hammer et al. “Distribution of the 300 GVOs (red dots) and associated cylinder
bins (in green) using a Hammer projection,” [51].

the EQP(2,1200) spherical code. “1200 was selected by performing a parametric study on the
effect of number of orientations on the homogenized stress as well as the maximum interface
stress” (Figure 21).
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Figure 21: Sabiston et al. “Interface stress distribution over the fibre ODF for plaque location 1
considering the entire microstructure, excluding orientations that do not appear in the evaluated
microstructural image,” [117].

Mathematical physics
The 2021 paper by Benedikter and colleagues [13] rigorously derives “the leading order of the
correlation energy of a Fermi gas in a scaling regime of high density and weak interaction.”
The paper uses a modified version of the EQ(2,M) partition that (1) partitions the northern
hemisphere and reflects this partition into the southern hemisphere; and (2) introduces corridors
between the regions; (Figure 22).

Figure 22: Benedikter et al. [13].

Robotics
The 2020 paper by Pfaff and colleagues [106]. proposes “a grid filter for arbitrary-dimensional
unit hyperhemispheres and apply it to an orientation estimation task and another evaluation
scenario.” (Figure 23). It is one of a series of related papers [43, 71, 82, 83, 84, 85, 106, 107,
108] that each cite [74]. The partitions used in the paper differ from EQ(d,N) partitions in
the following way: “we adjusted the algorithm so that it yields the best even integer number
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Figure 23: Pfaff et al. “Illustration showing a partition of H2 with equally sized regions and a
partition of S2 obtained by mirroring the partition of the hemisphere,” [106].

of collars. Then, when subdividing from top to bottom, the boundary of one collar will run
along the equator of the hypersphere.” The paper does not explain how the modified algorithm
generates regions of equal area, nor does it provide source code.

Visualization
The 2012 paper by Arrigo and colleagues [8] describes the R2G2 R CRAN package for the vi-
sualization of spatial data using Google Earth. The package uses the EQ(2,50), Partition(2,500),
EQ(2,5000), EQ(2,10 000), and EQ(2,20 000) partitions to calculate and plot histograms and
other visualizations of data distributed on the Earth’s surface (Figure 24).

Figure 24: Arrigo, et al. “Species diversity of the Selaginella subgenus Tetragonostachys in
North America using a grid of 20 000 cells with equal areas,” [8].
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Sphere vs hypersphere
The majority of application papers citing [74] focus only on applications on the sphere S2.
Even so, only about 14 papers citing [74] also cite either the original work on zonal equal
area partitioning of S2 by Rakhmanov, Saff and Zhou [113] or Zhou’s PhD thesis [148]. Of
these 14 papers ([2, 21, 22, 37, 55, 56, 57, 60, 91, 96, 127, 136, 140, 147, 150]) only six
([2, 57, 60, 91, 147, 150]) are applications-oriented.

Ahmadia’s 2010 PhD thesis uses the EQ(d,N) partitions with d from 5 to 12 to solve a semi-
conductor lithography optimization problem [2]. The 2011 paper by Ishii uses the EQ(2,N)
partitions and EQP(2,N) codes as possible solutions to a sampling problem used to calculate
the total radiated power from radio equipment – a quadrature problem [57]). Jenkins’ 2012
paper [60] concerns the construction of sparse spanners of unit ball graphs in R3, relating this
problem to the covering problem on the sphere, and using EQ(2,N) partitions to efficiently ap-
proximate coverings. The 2009 paper by Marantis and colleagues [91] is described in Section
3.1. The 2009 paper by Xie and colleagues [147] is a conference paper companion to [91].
The 2009 paper by Zotter [149] compares a number of different methods of approximating
polynomial functions on the sphere S2 in order to analyze discrete spherical microphone and
loudspeaker arrays. Unfortunately this paper seems to confuse interpolation using extremal
fundamental systems on S2 with hyperinterpolation [123].

Of the papers that tackle applications on higher-dimensional spheres, some use the double
covering of the SO(3) group of rotations in R3 by the SU(2) group, represented by the unit
quaternions, modelled as the hypersphere S3, and therefore use the EQ(3,N) partitions and the
EQP(3,N) codes [26, 27, 34, 44, 94, 95, 106, 108]. A few, such as the 2022 paper by Ramírez
and Elvingson [114] address S3 and the EQP(3,N) codes for other reasons. Others address
applications in higher dimensions, including: Ahmadia’s 2010 PhD thesis [2], as described
above; a 2012 report by Kessler and colleagues [65] that describes an algorithm that uses the
EQP codes to construct an approximately optimal path to extinction in systems of arbitrary
dimensions; the 2016 paper by Rachsinger and colleagues [111], as described in Section 3.1;
the related 2016 paper by Sedaghat and colleagues [121], also described in Section 3.1; a
2017 paper by Kurz and Hanebeck [69] that uses the EQP codes to construct linear regression
Kalman filters; and finally a 2021 paper by Miyamoto and colleagues [97] that uses Hopf
fibrations to construct spherical codes in R2k

, comparing these to EQP(2k − 1,N) codes for k
from 2 to 5.

Of the mathematical papers that use the EQ partitions and the EQP codes in higher dimen-
sions, one stands out: the 2019 paper by Kunc and Fritzen [67], which uses the EQP codes as
starting points for energy minimization.

5 Conclusion
Judging from the wide variety of applications of the EQ partitions and the EQP codes, these
constructions appear to be widely applicable.

Closer inspection reveals that the constructions perform poorly on some problems. Chief
among these is the reconstruction of functions via spherical harmonics [91], accomplished on
S2, for example, by scattered data approximation [61, 62, 123]. The joint paper with Som-
mariva and Vianello [81] addresses this problem by using large EQP codes as norming sets,
and constructing subsets that have approximation properties almost as good as the norming
sets.
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In the case covered in this paper, the applicability of the mathematical construction appears
to be not so unreasonable, given the work that has been done in testing, for each relevant
problem, the performance of the construction relative to alternatives, and the fitting of the
construction into an overall solution that addresses each specific application.

Acknowledgments
This paper is based on a series of presentations given at Oak Ridge National Laboratory
(ORNL) in 2014, The European Centre for Medium-Range Weather Forecasts (ECMWF) in
2016, The Bureau of Meteorology in 2017, and The Queensland Association of Mathematics
Teachers (QAMT) State Conference in 2021.

Thanks to Kate Evans of ORNL, George Mozdzynski of ECMWF, and Monique Russell
of QAMT for invitations to speak. Thanks to the Bureau of Meteorology for support to visit
ECMWF in Reading in 2016.

The original research in the PhD thesis [75] was supported by a University Postgraduate
Award from the University of New South Wales.

Declaration of interests
The author declares that he has no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

References
[1] S. Aaronson. Why philosophers should care about computational complexity. In

B. Copeland, C. Posy, and O. Shagrir, editors, Computability: Turing, Gödel, Church,
and Beyond, pages 261–327. MIT Press, 2013. ISBN 978-0-262-01899-9. doi: 10.7551/
mitpress/8009.003.0011. URL https://doi.org/10.7551/mitpress/8009.003.0011.

[2] A. J. Ahmadia. Parallel strategies for nonlinear mask optimization in semiconductor
lithography. PhD thesis, Columbia University, 2010.

[3] R. Alexander. On the sum of distances between N points on a sphere. Acta Mathe-
matica, 23:443–448, 1972. doi: 10.1007/BF01896964. URL https://doi.org/10.1007/
BF01896964.

[4] P. Alken, E. Thébault, C. Beggan, J. Aubert, J. Baerenzung, W. J. Brown, S. Califf,
A. Chulliat, G. Cox, C. C. Finlay, et al. Evaluation of candidate models for the 13th
generation International Geomagnetic Reference Field. Technical report, Springer, 2021.
URL https://doi.org/10.1186/s40623-020-01281-4.

[5] E. L. Altschuler, T. J. Williams, E. R. Ratner, R. Tipton, R. Stong, F. Dowla, and
F. Wooten. Possible global minimum lattice configurations for Thomson’s problem
of charges on a sphere. Physical Review Letters, 78(14):2681, 1997. doi: 10.1103/
PhysRevLett.78.2681. URL https://doi.org/10.1103/PhysRevLett.78.2681.

P. Leopardi 20/32

https://doi.org/10.7551/mitpress/8009.003.0011
https://doi.org/10.1007/BF01896964
https://doi.org/10.1007/BF01896964
https://doi.org/10.1186/s40623-020-01281-4
https://doi.org/10.1103/PhysRevLett.78.2681


Applicability of equal area sphere partitions

[6] C. An, X. Chen, I. H. Sloan, and R. S. Womersley. Well conditioned spherical designs
for integration and interpolation on the two-sphere. SIAM J. Numer. Anal., 48(6):2135–
2157, 2010. ISSN 0036-1429. doi: 10.1137/100795140. URL https://doi.org/10.1137/
100795140.

[7] V. Arnold. On teaching mathematics. Resonance Journal of Science Education, 19
(9):851–861, September 2014. URL https://www.ias.ac.in/article/fulltext/reso/019/09/
0851-0861.

[8] N. Arrigo, L. P. Albert, P. G. Mickelson, and M. S. Barker. Quantitative visualization of
biological data in Google Earth using R2G2, an R CRAN package. Molecular Ecology
Resources, 12(6):1177–1179, 2012. doi: 10.1111/1755-0998.12012. URL https://doi.
org/10.1111/1755-0998.12012.

[9] M. Aste, M. Boninsegna, A. Freno, and E. Trentin. Techniques for dealing with incom-
plete data: a tutorial and survey. Pattern Analysis and Applications, 18:1–29, 2015. doi:
10.1007/s10044-014-0411-9. URL https://doi.org/10.1007/s10044-014-0411-9.

[10] J. Azzouni. Applying mathematics: An attempt to design a philosophical problem. The
Monist, 83(2):209–227, 2000. URL http://www.jstor.org/stable/27903679.

[11] J. Beck and W. Chen. Irregularities of distribution. Cambridge University Press, 1987.
doi: 10.1017/CBO9780511565984. URL https://doi.org/10.1017/CBO9780511565984.

[12] C. Beltrán and U. Etayo. The diamond ensemble: a constructive set of spherical points
with small logarithmic energy. Journal of Complexity, 59:101471, 2020. doi: 10.1016/
j.jco.2020.101471. URL http://hdl.handle.net/10902/20784.

[13] N. Benedikter, P. T. Nam, M. Porta, B. Schlein, and R. Seiringer. Correlation energy of
a weakly interacting Fermi gas. Inventiones mathematicae, 225(3):885–979, 2021. doi:
10.1007/s00222-021-01041-5. URL https://doi.org/10.1007/s00222-021-01041-5.

[14] S. V. Borodachov, D. P. Hardin, and E. B. Saff. Discrete energy on rectifiable
sets. Springer, 2019. ISBN 978-0-387-84807-5; 978-0-387-84808-2. doi: 10.1007/
978-0-387-84808-2. URL https://doi.org/10.1007/978-0-387-84808-2.

[15] A. Borovik. A mathematician’s view of the unreasonable ineffectiveness of mathematics
in biology. Biosystems, 205:104410, 2021. doi: 10.1016/j.biosystems.2021.104410.
URL https://doi.org/10.1016/j.biosystems.2021.104410.

[16] L. Bos and S. De Marchi. Limiting values under scaling of the Lebesgue function for
polynomial interpolation on spheres. Journal of approximation theory, 96(2):366–377,
1999. doi: 10.1006/jath.1998.3245. URL https://doi.org/10.1006/jath.1998.3245.

[17] J. Bourgain and J. Lindenstrauss. Distribution of points on spheres and approximation by
zonotopes. Israel Journal of Mathematics, 64:25–32, 1988. doi: 10.1007/BF02767366.
URL https://doi.org/10.1007/BF02767366.

[18] J.-M. Bourinet. Ferum 4.1 user’s guide. Institute Français de Mécanique Avancée
(IFMA), Clermont-Ferrand, France, 2010. URL https://www.sigma-clermont.fr/sites/
default/files/atoms/files/FERUM4.1_Users_Guide.pdf.

P. Leopardi 21/32

https://doi.org/10.1137/100795140
https://doi.org/10.1137/100795140
https://www.ias.ac.in/article/fulltext/reso/019/09/0851-0861
https://www.ias.ac.in/article/fulltext/reso/019/09/0851-0861
https://doi.org/10.1111/1755-0998.12012
https://doi.org/10.1111/1755-0998.12012
https://doi.org/10.1007/s10044-014-0411-9
http://www.jstor.org/stable/27903679
https://doi.org/10.1017/CBO9780511565984
http://hdl.handle.net/10902/20784
https://doi.org/10.1007/s00222-021-01041-5
https://doi.org/10.1007/978-0-387-84808-2
https://doi.org/10.1016/j.biosystems.2021.104410
https://doi.org/10.1006/jath.1998.3245
https://doi.org/10.1007/BF02767366
https://www.sigma-clermont.fr/sites/default/files/atoms/files/FERUM4.1_Users_Guide.pdf
https://www.sigma-clermont.fr/sites/default/files/atoms/files/FERUM4.1_Users_Guide.pdf


Applicability of equal area sphere partitions

[19] J.-M. Bourinet, C. Mattrand, and V. Dubourg. A review of recent features and im-
provements added to FERUM software. In H. Furuta, D. M. Frangopol, and M. Shi-
nozuka, editors, Proc. 10th International Conference on Structural Safety and Reliabil-
ity (ICOSSAR 2009), Osaka, Japan, September 13–17, 2009. CRC Press, 2009. URL
https://hal.science/hal-04502313.

[20] G. E. Box. Robustness in the strategy of scientific model building. In Robustness in
statistics, pages 201–236. Elsevier, 1979. doi: 10.1016/B978-0-12-438150-6.50018-2.
URL https://doi.org/10.1016/B978-0-12-438150-6.50018-2.

[21] J. Brauchart. Optimal logarithmic energy points on the unit sphere. Mathematics of
Computation, 77(263):1599–1613, 2008. doi: 10.1090/S0025-5718-08-02085-1. URL
https://doi.org/10.1090/S0025-5718-08-02085-1.

[22] J. Brauchart, D. P. Hardin, and E. B. Saff. The next-order term for optimal Riesz
and logarithmic energy asymptotics on the sphere. Recent advances in orthogo-
nal polynomials, special functions, and their applications, 578:31–61, 2012. doi:
10.1090/conm/578/11483. URL https://doi.org/10.1090/conm/578/11483.

[23] J. S. Brauchart. Punkvertverteilungen extremaler diskreter Energien auf Sphären. Diplo-
marbeit, Institut für Mathematik A, Technische Universität Graz, Graz, Austria, 2001.

[24] J. S. Brauchart. Low-discrepancy point sets lifted to the unit sphere. Presentation
at MCQMC, 2012. URL http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_
Brauchart.pdf.

[25] J. S. Brauchart, J. Dick, E. B. Saff, I. H. Sloan, Y. G. Wang, and R. S. Womersley.
Covering of spheres by spherical caps and worst-case error for equal weight cubature in
Sobolev spaces. Journal of Mathematical Analysis and Applications, 431(2):782–811,
2015. doi: 10.1016/j.jmaa.2015.05.079. URL https://doi.org/10.1016/j.jmaa.2015.05.
079.

[26] V. B. Chu. Probing RNA Folding Through Electrostatic and Coarse-grained Simulations.
PhD thesis, Stanford University, 2010. URL https://purl.stanford.edu/st973xv8543.

[27] V. B. Chu, J. Lipfert, Y. Bai, V. S. Pande, S. Doniach, and D. Herschlag. Do confor-
mational biases of simple helical junctions influence RNA folding stability and speci-
ficity? RNA, 15(12):2195–2205, 2009. doi: 10.1261/rna.1747509. URL https:
//doi.org/10.1261/rna.1747509.

[28] S. B. Damelin and P. J. Grabner. Energy functionals, numerical integration and asymp-
totic equidistribution on the sphere. Journal of Complexity, 19(3):231–246, June 2003.
doi: 10.1016/S0885-064X(02)00006-7. URL https://doi.org/10.1016/S0885-064X(02)
00006-7. (Postscript) Corrigendum, Journal of Complexity, 20 (2004), pp. 883–884.

[29] S. Das and K. Maharatna. An automated toolchain for quantitative characterisation of
structural connectome from MRI based on non-anatomical cortical parcellation. In 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biol-
ogy Society (EMBC), pages 5653–5656. IEEE, 2020. doi: 10.1109/EMBC44109.2020.
9176642. URL https://doi.org/10.1109/EMBC44109.2020.9176642.

P. Leopardi 22/32

https://hal.science/hal-04502313
https://doi.org/10.1016/B978-0-12-438150-6.50018-2
https://doi.org/10.1090/S0025-5718-08-02085-1
https://doi.org/10.1090/conm/578/11483
http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Brauchart.pdf
http://www.mcqmc2012.unsw.edu.au/slides/MCQMC2012_Brauchart.pdf
https://doi.org/10.1016/j.jmaa.2015.05.079
https://doi.org/10.1016/j.jmaa.2015.05.079
https://purl.stanford.edu/st973xv8543
https://doi.org/10.1261/rna.1747509
https://doi.org/10.1261/rna.1747509
https://doi.org/10.1016/S0885-064X(02)00006-7
https://doi.org/10.1016/S0885-064X(02)00006-7
https://doi.org/10.1109/EMBC44109.2020.9176642


Applicability of equal area sphere partitions

[30] D. Deboy. Acoustic centering and rotational tracking in surrounding spherical micro-
phone arrays. PhD thesis, University of Music and Performing Arts Graz, Austria,
2010. URL https://ambisonics.iem.at/Members/zotter/index_html/publications/2010_
Deboy_AcousticCenteringRotationTracking_DA.pdf.

[31] D. Deboy and F. Zotter. Acoustic center and orientation analysis of sound-radiation
recorded with a surrounding spherical microphone array. In Proceedings of the 2nd
International Symposium on Ambisonics and Spherical Acoustics, volume 21, pages 6–
7, 2010. URL https://api.semanticscholar.org/CorpusID:2326259.

[32] W. Deconinck, M. Hamrud, C. Kühnlein, G. Mozdzynski, P. K. Smolarkiewicz,
J. Szmelter, and N. P. Wedi. Accelerating extreme-scale numerical weather predic-
tion. In Parallel Processing and Applied Mathematics: 11th International Confer-
ence, PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected Papers,
Part II, pages 583–593. Springer, 2016. doi: 10.1007/978-3-319-32152-3\_54. URL
https://doi.org/10.1007/978-3-319-32152-3_54.

[33] W. Deconinck, P. Bauer, M. Diamantakis, M. Hamrud, C. Kühnlein, P. Maciel, G. Men-
galdo, T. Quintino, B. Raoult, P. K. Smolarkiewicz, et al. Atlas: A library for numerical
weather prediction and climate modelling. Computer Physics Communications, 220:
188–204, 2017. doi: 10.1016/j.cpc.2017.07.006. URL https://doi.org/10.1016/j.cpc.
2017.07.006.

[34] M. J. Del Razo, M. Dibak, C. Schütte, and F. Noé. Multiscale molecular kinetics by
coupling Markov state models and reaction-diffusion dynamics. The Journal of Chem-
ical Physics, 155(12), 2021. doi: 10.1063/5.0060314. URL https://doi.org/10.1063/5.
0060314.

[35] S. G. Devriese. Detecting and imaging time-lapse conductivity changes using elec-
tromagnetic methods. PhD thesis, University of British Columbia, 2016. URL https:
//dx.doi.org/10.14288/1.0340342.

[36] S. G. Devriese and D. W. Oldenburg. Enhanced imaging of SAGD steam chambers
using broadband electromagnetic surveying. In SEG International Exposition and An-
nual Meeting, pages SEG–2014. SEG, 2014. doi: 10.1190/segam2014-1247.1. URL
https://doi.org/10.1190/segam2014-1247.1.

[37] A. Dickstein and F. Zapolsky. Approximation of quasi-states on manifolds. Jour-
nal of Applied and Computational Topology, 3(3):221–248, 2019. doi: 10.1007/
s41468-019-00030-1. URL https://doi.org/10.1007/s41468-019-00030-1.

[38] J. M. R. Domingos. Geomagnetic and space weather variability modes in satellite data.
PhD thesis, Université Grenoble Alpes; Universidade de Coimbra, 2018. URL https:
//theses.hal.science/tel-01828171/file/ROSA_DOMINGO_2018_archivage.pdf.

[39] U. Etayo. Spherical cap discrepancy of the diamond ensemble. Discrete & Compu-
tational Geometry, 66(4):1218–1238, 2021. doi: 10.1007/s00454-021-00305-4. URL
https://doi.org/10.1007/s00454-021-00305-4.

[40] N. Fauchereau, G. Pegram, and S. Sinclair. Empirical mode decomposition on the
sphere: application to the spatial scales of surface temperature variations. Hydrology

P. Leopardi 23/32

https://ambisonics.iem.at/Members/zotter/index_html/publications/2010_Deboy_AcousticCenteringRotationTracking_DA.pdf
https://ambisonics.iem.at/Members/zotter/index_html/publications/2010_Deboy_AcousticCenteringRotationTracking_DA.pdf
https://api.semanticscholar.org/CorpusID:2326259
https://doi.org/10.1007/978-3-319-32152-3_54
https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/10.1016/j.cpc.2017.07.006
https://doi.org/10.1063/5.0060314
https://doi.org/10.1063/5.0060314
https://dx.doi.org/10.14288/1.0340342
https://dx.doi.org/10.14288/1.0340342
https://doi.org/10.1190/segam2014-1247.1
https://doi.org/10.1007/s41468-019-00030-1
https://theses.hal.science/tel-01828171/file/ROSA_DOMINGO_2018_archivage.pdf
https://theses.hal.science/tel-01828171/file/ROSA_DOMINGO_2018_archivage.pdf
https://doi.org/10.1007/s00454-021-00305-4


Applicability of equal area sphere partitions

and Earth System Sciences, 12(3):933–941, 2008. doi: 10.5194/hess-12-933-2008. URL
https://doi.org/10.5194/hess-12-933-2008.

[41] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding tech-
nique for MAX CUT. Random Structures and Algorithms, 20(3):403–440, 2002. doi:
10.1002/rsa.10036. URL https://doi.org/10.1002/rsa.10036. Special Issue: Probabilistic
Methods in Combinatorial Optimization.

[42] A. Frey. https://github.com/sashafrey/latex, 2016.

[43] D. Frisch and U. D. Hanebeck. Deterministic Von Mises–Fisher sampling on the sphere
using Fibonacci lattices. In 2023 IEEE Symposium Sensor Data Fusion and Inter-
national Conference on Multisensor Fusion and Integration (SDF-MFI), pages 1–8.
IEEE, 2023. doi: 10.1109/SDF-MFI59545.2023.10361396. URL https://doi.org/10.
1109/SDF-MFI59545.2023.10361396.

[44] A. Fusiello. Exact affine histogram matching by cumulants transformation.
In International Conference on Image Analysis and Processing, pages 199–210.
Springer, 2022. doi: 10.1007/978-3-031-06430-2_17. URL https://doi.org/10.1007/
978-3-031-06430-2_17.

[45] G. Gigante and P. Leopardi. Diameter bounded equal measure partitions of Ahlfors
regular metric measure spaces. Discrete & Computational Geometry, 57:419–430, 2017.
doi: 10.1007/s00454-016-9834-y. URL https://doi.org/10.1007/s00454-016-9834-y.

[46] P. J. Grabner and R. F. Tichy. Spherical designs, discrepancy and numerical integration.
Mathematics of Computation, 60:327–336, 1993. doi: 10.2307/2153170. URL https:
//doi.org/10.2307/2153170.

[47] M. Guniel. Electron microscopy images. 2024. URL https://www.dartmouth.edu/emlab/
gallery/index.php.

[48] J. Hamkins. Design and Analysis of Spherical Codes. PhD thesis, Univ. of Illinois at
Urbana-Champaign, 1996. URL https://hdl.handle.net/2142/20964.

[49] J. Hamkins and K. Zeger. Asymptotically dense spherical codes. I. Wrapped spherical
codes. IEEE Transactions on Information Theory, 43(6):1774–1785, November 1997.
doi: 10.1109/18.641544. URL https://doi.org/10.1109/18.641544.

[50] M. D. Hammer. Local estimation of the Earth’s core magnetic field. PhD thesis,
Technical University of Denmark, 2018. URL https://ftp.space.dtu.dk/pub/cfinl/theses/
PhDThesis_Magnus_Hammer.pdf.

[51] M. D. Hammer, G. A. Cox, W. J. Brown, C. D. Beggan, and C. C. Finlay. Geomagnetic
Virtual Observatories: monitoring geomagnetic secular variation with the Swarm satel-
lites. Earth, Planets and Space, 73(1):1–22, 2021. doi: 10.1186/s40623-021-01357-9.
URL https://doi.org/10.1186/s40623-021-01357-9.

[52] M. D. Hammer, C. C. Finlay, and N. Olsen. Applications for CryoSat-2 satellite
magnetic data in studies of Earth’s core field variations. Earth, Planets and Space,
73:1–22, 2021. doi: 10.1186/s40623-021-01365-9. URL https://doi.org/10.1186/
s40623-021-01365-9.

P. Leopardi 24/32

https://doi.org/10.5194/hess-12-933-2008
https://doi.org/10.1002/rsa.10036
https://github.com/sashafrey/latex
https://doi.org/10.1109/SDF-MFI59545.2023.10361396
https://doi.org/10.1109/SDF-MFI59545.2023.10361396
https://doi.org/10.1007/978-3-031-06430-2_17
https://doi.org/10.1007/978-3-031-06430-2_17
https://doi.org/10.1007/s00454-016-9834-y
https://doi.org/10.2307/2153170
https://doi.org/10.2307/2153170
https://www.dartmouth.edu/emlab/gallery/index.php
https://www.dartmouth.edu/emlab/gallery/index.php
https://hdl.handle.net/2142/20964
https://doi.org/10.1109/18.641544
https://ftp.space.dtu.dk/pub/cfinl/theses/PhDThesis_Magnus_Hammer.pdf
https://ftp.space.dtu.dk/pub/cfinl/theses/PhDThesis_Magnus_Hammer.pdf
https://doi.org/10.1186/s40623-021-01357-9
https://doi.org/10.1186/s40623-021-01365-9
https://doi.org/10.1186/s40623-021-01365-9


Applicability of equal area sphere partitions

[53] M. D. Hammer, C. C. Finlay, and N. Olsen. Secular variation signals in magnetic field
gradient tensor elements derived from satellite-based geomagnetic virtual observatories.
Geophysical Journal International, 229(3):2096–2114, 2022. doi: 10.1093/gji/ggac004.
URL https://doi.org/10.1093/gji/ggac004.

[54] R. W. Hamming. The unreasonable effectiveness of mathematics. The American Math-
ematical Monthly, 87(2):81–90, 1980. doi: 10.2307/2321982. URL https://doi.org/10.
2307/2321982.

[55] D. P. Hardin, T. Michaels, and E. B. Saff. A comparison of popular point configurations
on S2. Dolomites Research Notes on Approximation, 9(1):16–49, 2016. doi: 10.14658/
PUPJ-DRNA-2016-1-2. URL https://drna.padovauniversitypress.it/2016/1/2.
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Abstract
We provide Matlab and Python codes for polynomial approximation on complex com-

pact sets with connected complement, by Chebyshev-like admissible polynomial meshes
on boundaries with piecewise (trigonometric) polynomial parametrization. Such meshes
have lower cardinality with respect to those previously known. They are used for polyno-
mial least-squares, for the extraction of extremal interpolation sets of Fekete and Leja type,
as well as for the computation of the uniform norms (Lebesgue constants) of polynomial
projection operators.
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1 Introduction
In this paper we are concerned with (admissible) polynomial meshes {Zn}n≥1 and polynomial
approximation on a complex compact set K ⊂ C with connected complement. By the famous
Mergelyan Theorem [15], these are sets where any continuous function f : K → C, with holo-
morphic restriction to int(K), can be uniformly approximated by polynomials.

Polynomial meshes are sequences of finite subsets Zn ⊂ K such that

∥p∥K ≤ c∥p∥Zn , ∀p ∈ Pn(C) , (1)

where ∥·∥ is the uniform norm on a continuous or discrete bounded subset, and p is any polyno-
mial with complex coefficients with degree not exceeding n (we recall that c is usually termed
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the “constant” of the polynomial mesh). Since Zn is Pn(C)-determining, i.e. polynomials in
Pn(C) vanishing on Zn vanish everywhere in C, clearly card(Zn) ≥ n+1 = dim(Pn(C)). The
polynomial mesh is then called optimal when card(Zn) = O(n).

Starting from the seminal paper of 2008 by Calvi and Levenberg [9], polynomial meshes
(that can be defined also in multivariate instances) have begun to play a relevant role in polyno-
mial approximation. Among their numerous properties, we may recall that they are preserved
by affine transformations, finite union and small perturbations, are well-suited for least-squares
approximation and contain extremal subsets of Fekete and Leja type for polynomial interpo-
lation with slowly increasing Lebesgue constant. Moreover, polynomial meshes can be con-
veniently used for polynomial optimization and Lebesgue constant computation with rigorous
interval error bounds. Without any pretence of exhaustivity, we may quote e.g. [2, 4, 3, 6, 5,
16, 17] with the references therein.

Focalizing on the complex univariate case, it has been recently proved in [4] that optimal
admissible meshes of Chebyshev type can be constructed on the boundary ∂K, provided that
it lies on a union of curves in K having a piecewise polynomial or trigonometric polynomial
parametrization. The construction uses the fact that ∥p∥K = ∥p∥∂K by the maximum princi-
ple for holomorphic functions (cf. e.g. [14]), and basic polynomial inequalities concerning
Chebyshev points on the parameter real interval.

More precisely, let CN be the set of N Chebyshev zeros in (−1,1), namely cos((2 j −
1)π/(2N)), 1 ≤ j ≤ N, or the set of N +1 Chebyshev extrema in [−1,1], namely cos( jπ/N),
0 ≤ j ≤ N. Consider the points

C m
ν = τ(CN)⊂ [a,b] (2)

where
N = mν , τ(u) =

b−a
2

u+
b+a

2
, u ∈ [−1,1] , (3)

in the algebraic case, and

N = 2mν , τ(u) = 2arcsin
(

usin
(

b−a
4

))
+

b+a
2

, u ∈ [−1,1] , (4)

in the trigonometric case. Then, the following estimate holds [4]:

Proposition 1. Let ∂K ⊆Γ=
⋃s

j=1 Γ j ⊆K with parametric algebraic or trigonometric arcs Γ j =
γ j([a j,b j]) of degree d j = max{degRe(γ j),degIm(γ j)}, 1 ≤ j ≤ s (where the angle intervals
possibly are sub-intervals of the period in the trigonometric case, namely b j −a j ≤ 2π). Then
for every p ∈ Pn(C), n ≥ 1, m > 1

∥p∥K = ∥p∥Γ ≤ cm∥p∥Zm
n , Zm

n =
s⋃

j=1

γ j(C
m
nd j

) , cm =
1

cos(π/(2m))
, (5)

i.e. {Zm
n }n≥1 is an admissible polynomial mesh for K with constant cm.

Estimate (5) is a cornerstone of our code for complex polynomial approximation. Notice
that the class of domains with connected complement and such boundaries is very wide: it
includes linear polygons, as well as curvilinear polygons with boundary tracked by splines,
or by polar arcs like γ j(t) = z0 + r j(t)(cos(t)+ isin(t)) with r j(t) a trigonometric polynomial.
See the Figures below for some illustrative examples. The corresponding meshes have O(mn)
cardinality, that asymptotically improves the O(n2) cardinality of previously known meshes
on any connected compact set of C whose boundary is a C1 parametric curve with bounded
tangent vectors, cf. [1].
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Observe that cm → 1 as m → ∞. This fact is at the base of a computable interval estimate of
the Lebesgue constant (uniform operator norm) of any linear projection operator Ln : C(K)→
Pn(C) of the form

Ln f (z) =
M

∑
j=1

f (ξ j)φ j(z) , (6)

where {ξ j} ⊂ K and {φ j} is a set of generators of Pn(C). We recall that such an operator
structure holds for polynomial interpolation at M = n+ 1 distinct nodes, where the φ j(z) are
the corresponding cardinal Lagrange polynomials, but also by polynomial least-squares at M >
n+1 sampling nodes (cf. [4]). In both cases we simply have

φ j(z) = Kn(z,ξ j) =
n+1

∑
k=1

qk(z)qk(ξ j) , (7)

where Kn is the reproducing kernel of the discrete scalar product with unit weights supported
at the sampling nodes {ξ j} and {qk} a discrete orthogonal polynomial basis. Given any poly-
nomial basis of Pn(C), say {pk}, we recall that a discrete orthogonal basis can be computed in
principle by a QR factorization of the corresponding Vandermonde-like interpolation matrix, as

[q1(z), . . . ,qn+1(z)] = [p1(z), · · · , pn+1(z)]R−1 . (8)

The following result concerning Lebesgue constants has been proved in [4]:

Proposition 2. Let λn(z) = ∑
M
j=1 |φ j(z)|, z ∈ K, be the “Lebesgue function” of Ln in (6) and

{Zm
n } the polynomial mesh of Proposition 1. Then for every n ≥ 1, m > 1, the following

inequalities hold
∥λn∥Zm

n ≤ ∥Ln∥ ≤ cm∥λn∥Zm
n , (9)

0 ≤ ∥Ln∥−∥λn∥Zm
n ≤ (cm −1)∥Ln∥ , (10)

for the Lebesgue constant ∥Ln∥= ∥λn∥K = ∥λn∥Γ.

We observe that

cm −1 =
1− cos(π/(2m))

cos(π/(2m))
∼ π2

8m2 ≈ 1.23
m2 , (11)

that is ∥λn∥Zm
n by (10) is a O(1/m2) relative approximation of the Lebesgue constant: for m = 4

we already get the Lebesgue constant with an error less than 10%, i.e. we can substantially
evaluate its actual order of magnitude.

2 Description of the code
After the above summary of the main theoretical results and estimates underlying the complex
polynomial approximation algorithms, we can now briefly describe the code implemented in
Matlab and Python and available at https://github.com/alvisesommariva/CPOLYMESH. All
the main computations are performed by basic numerical linear algebra subroutines. The main
functions are:

• Polynomial Mesh Constructor
Function Cpom

D.J. Kenne, A. Sommariva, M. Vianello 3/11
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This function, given the parametrization intervals [a j,b j] and the corresponding curve
components, namely the complex algebraic or trigonometric polynomials γ j(t) of degree
d j, computes the Chebyshev submeshes γ j(C m

nd j
) and their union

Zm
n =

s⋃
j=1

γ j(C
m
nd j

)

as in Proposition 1. Linear and curvilinear polygons defined by spline arcs are included,
as well as trigonometric polar arcs like γ j(t) = z0 + r j(t)(cos(t)+ isin(t)), with r j(t) a
real trigonometric polynomial on a subinterval of the period.

• Stabilized Vandermonde Matrix Constructor
Function Cvand

Constructs a rectangular Vandermonde-like matrix

Vn(X) = (p j(zi)) , 1 ≤ i ≤ card(X) , 1 ≤ j ≤ n+1 ,

on a complex set X = {zi}. In order to cope with the extreme ill-conditioning of the
Vandermonde matrices with the standard monomial basis, we have chosen to work with
a shifted and scaled basis

p j(z) = ((z− zb)/δ ) j−1 , 1 ≤ j ≤ n+1 ,

where zb = 1
card(X) ∑zi∈X zi is the barycenter of the points and δ = maxzi∈X |zi − zb| the

radius of an enclosing disk. If an enclosing disk is already known, its center zb and radius
δ can be directly passed as input parameters.

• Discrete Orthogonal Polynomials Constructor and Evaluator
Functions Cdop and Cdopeval

Cdop computes a discrete orthogonal polynomial basis on a finite complex set X with
card(X) ≥ n+ 1, and Cdopeval evaluates the orthogonal basis on a target complex set
Y . Orthogonalization is performed by applying twice a QR factorization with unitary Q
and square triangular factor R, namely

Vn(X) = Q1R1 , Vn(X)/R1 = Q2R2

following the well-known “twice is enough” orthogonalization rule in finite precision
arithmetic [10]. The target matrix is

Wn(Y ) = (Vn(Y )/R1)/R2

where the matrix operator / is preferred to inv in order to automatically cope with pos-
sible ill-conditioning of the triangular factors.

• Discrete Extremal Sets Constructor
Function Cdes

Computes three interpolation pointsets corresponding to a greedy maximization of the
Vandermonde determinant modulus on the polynomial mesh Zm

n . We do not discuss their
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features in detail here and refer to the quoted literature for the underlying theoretical and
computational issues.

- AFP (Approximate Fekete Points): after a call to Cdop with X = Zm
n to get a better

conditioned matrix, AFP are obtained by a QR factorization with column pivoting of
the adjoint QH

2 , taking the points in Zm
n corresponding to the first n+ 1 elements of the

column permutation vector. They do not form a sequence, but typically have the lowest
Lebesgue constant among the three sets; cf. [6, 5, 8, 19].

- DLP (Discrete Leja Points): again after a call to Cdop with X = Zm
n , DLP are obtained

by a LU factorization with row pivoting of Q2, taking the points in Zm
n corresponding to

the first n+1 elements of the row permutation vector. They form a sequence and in the
present univariate complex instance are substantially equivalent to the iteration

ξ j = argmaxz∈Zm
n

j−1

∏
k=1

|z−ξk| , j = 2, . . . ,n+1 ,

after choosing ξ1 as the point that maximizes the element modulus in the first column of
Q2; cf. [5, 7].

- PLP (Pseudo Leja Points): these are a sequence obtained by the iteration

ξ j = argmaxz∈Zm
j−1

j−1

∏
k=1

|z−ξk| , j = 2, . . . ,n+1 ,

after choosing the first point ξ1 arbitrarily, e.g. ξ1 is one of the points in Zm
1 with largest

imaginary component; cf. [1] (and [11] for a multivariate extension).

• Polynomial Projectors (either Interpolation or Least-Squares)

Function Cfit

Given a sample column array f = f (X) of a function at a finite complex set X with
card(X)≥ n+1, computes the polynomial projector coefficients in an orthogonal poly-
nomial basis at X and evaluates the projector Ln f at a target complex set Y . In view of
(7)-(8) the computation is simply

Ln f (Y ) =Wn(Y )QH
2 f

after a call to Cdop on X and Cdopeval on Y .

• Lebesgue Constant Evaluator
Function Cleb

Computes on a control set Z the maximum of the Lebesgue function of interpolation on
a set X with card(X) = n+1 or least-squares with card(X)> n+1, as

∥λn∥Z = ∥Wn(Z)QH
2 ∥∞ = ∥((Vn(Z)/R1)/R2)QH

2 ∥∞

by a call to Cdop on X and to Cdopeval with Y = Z. In view of Proposition 2, choosing
Z = Zm

n produced by a call to Cpom one gets the certified interval estimate (9) for the
Lebesgue constant of X .
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3 Numerical tests and demos
In this section we present several numerical tests for the code CPOLYMESH. All the corre-
sponding demos are available at [12, 13], along with a number of other examples.

The compact sets considered, say K1, . . . ,K9, with boundary defined by algebraic or trigono-
metric polynomial arcs, appear in Figure 2. For the sake of clarity and brevity we do not
plot Leja-like interpolation points, whose structure however is not much different from that of
Fekete-like points. The figures below have been obtained by the Matlab package [12].

Figure 1: Exemplifying the variety of feasible (curvi)linear polygons: Approximate Fekete Points (magenta dots) for polynomial interpo-
lation at degree n = 20 via Chebyshev admissible meshes (black dots) of the piecewise polynomial or trigonometric boundary, with m = 2 (cf.
Proposition 1).

In particular, the compact sets are:

• a cardioid K1 where ∂K1 is defined parametrically as z(t)= cos(t)(1−cos(t)+i(sin(t)(1−
cos(t)))), with t ∈ [0,2π];

• the “Laporte heart” K2 where ∂K2 is defined parametrically as z(t) = sin3(t)+ i(cos(t)−
cos4(t)), with t ∈ [0,2π];

• the deltoid K3 where ∂K3 is defined parametrically as z(t) = 10exp(it)+ 5exp(−2it),
with t ∈ [0,2π];

D.J. Kenne, A. Sommariva, M. Vianello 6/11



CPOLYMESH

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

AFP

DLP

PLP

LS

Figure 2: Lebesgue constants for the extremal interpolation sets AFP, DLP, PLP, and for LS approximation, with degrees n = 1,2, . . . ,20,
on the domains of Fig. 1 in the same order.

• a sun shaped domain K4 obtained as union of the unit-disk with 4 segments of length 0.5;

• the “Sautereau butterfly” K5 where ∂K5 is defined parametrically as z(t) = (−3cos(2t)+
sin(7t)−1)exp(it), with t ∈ [0,2π];

• the domain K6 obtained as union of 3 random rectangles and 3 disks;

• the “Borromean-circles” domain K7, that is the union of three disks with radii equal to√
3 and centers exp(itk) with tk =

(4k−3)π
6 , k = 1,2,3;

• an equilateral triangle K8 with vertices Pk = exp(itk) with tk =
(4k−1)π

6 , k = 1,2,3;

• a symmetric cross K9 given as the union of 4 orthogonal unit segments with a common
extremum.

We stress the variety of “(curvi)linear polygons” appearing in these examples: some do-
mains are closure of open connected sets, other have components with no internal points. Some
have a boundary corresponding to a single parametric curve, other have a complicated bound-
ary being the union of simpler elements. In the latter case, there is no need to track accurately
the boundary of the union (that in some situations could be a difficult task), since we can sim-
ply take a union admissible mesh for the union of the element boundaries. Notice also that
the extremal interpolation points tend to concentrate on outward tips, cusps, angles or convex
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portions of the boundary and to avoid inward and concave ones (a well-known electrostatic
charges-like behavior, connected with their potential theoretic background, cf. [18]).

In Figure 2 we report the Lebesgue constants of interpolation at discrete extremal sets
of Fekete and Leja type, and of Least Squares approximation. We can observe that all the
Lebesgue constants exhibit an apparently sub-exponential average increase in the present de-
gree range, in line with the corresponding continuous extremal sets, cf. e.g. [9, 20]. However,
Leja-like points have tendentially a more erratic behavior with larger oscillations and tenden-
tially higher values with respect to approximate Fekete points (a phenomenon already observed
for example in the multivariate framework of [7]). On the contrary, Lebesgue constants of Least
Squares approximation on the whole polynomial mesh have the lowest values, with an appar-
ently logarithmic-like behavior.

3.1 Demos summary
3.1.1 Matlab package

The Matlab package includes two demos, that we briefly comment.

1. demo_cdes_1: by this routine we show how to

• define the complex domain (several ways),

• compute an admissible mesh (AM) of a fixed degree,

• extract extremal sets,

• compute a certified Lebesgue constant.

2. demo_cdes_2: by this routine we perform all batteries of numerical tests that are de-
scribed above.

In particular, varying the degrees, we

• compute an admissible mesh (AM) of a fixed degree,

• extract the AFP, DLP, PLP extremal sets,

• compute for each of them a certified Lebesgue constant,

• plot domain, extremal points and Lebesgue contants.

Changing the value of the variable domain_type, from 1 to 22, one can test our routines
also on other complex geometries, like hypocycloids, epicycloids, epitrochoids, lima-
cons, rhodoneas, eggs, bifoliums, Talbot curves, tricuspoids, torpedos, ellipses and an
alternative heart-shaped domain.

All the codes work also in GNU Octave. The only note is that to analyse curvilinear do-
mains it is necessary to have installed the spline toolbox (see https://gnu-octave.github.io/
packages/).

3.1.2 Python package

The Python package features a primary demo as well as four additional ones that are contained
within subpackages. These subpackages are named according to the points outlined in Section
2. We briefly comment these demos.
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1. demo: This is the primary routine of the Python package, performing identical tasks to
demo_cdes_2 available from the Matlab version.

2. demo_cleb: This demo is included in "lebesgue_constant_evaluator" subpackage and
performs the same functions as demo_cdes_1 from the Matlab package.

3. demo_cfit: This demo is included in "polynomial_projectors" subpackage and performs
the following tasks by varying the degrees:

• compute an admissible mesh (AM) for each degree,

• extract the AFP, DLP, PLP extremal sets,

• compute the polynomial of interpolation associated with each extremal set and com-
pute the discrete least squares polynomial fitting the whole admissible mesh,

• compute the errors of approximation in the supremum norm by varying the polyno-
mial degrees,

• plot the extremal points for the highest degree and the errors of approximation.

4. demo_cdes: This demo is included in "discrete_extremal_sets_constructor" subpackage
and performs the following tasks:

• compute an admissible mesh (AM) of a fixed degree,

• extract the AFP, DLP, PLP extremal sets,

• plot the extremal points on separate figures.

5. demo_cpom: This demo is included in the "polynomial_mesh_constructor" subpackage.
It computes the admissible mesh for a fixed degree and plots the points on a figure.

When testing our routines, changing the values inside the python function define_domain(),
from 0 to 31, will lead to the creation of complex polynomial curves such as: 0. Unit circle, 1.
Segment [-1,1], 2. Polygon M, 3. Sun, 4. Ellipse, 5. Union of circles, 6. Lune, 7. Cardioid, 8. 4
lenses, 9. Curve polygon, 10. Limacon, 11. Lissajous, 12. Egg, 13. Rhodonea, 14. Habenicht
clover, 15. Bifolium, 16. Torpedo, 17. Double egg, 18. Sautereau butterfly 1, 19. Sautereau
Butterfly 2, 20. Borromean circles, 23. Laporte heart, 24. Epicycloid, 25. Epitrochoid, 26.
Hypocycloid, 27. Nephroid, 28. Talbot curve, 29. Tricuspoid, 30. Rectangles+circles, 31.
Equilateral triangle.
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Abstract

In this paper we consider a mean-field optimal control problem with selective action
of the control, where the constraint is a continuity equation involving a non-local term and
diffusion. First order optimality conditions are formally derived in a general framework,
accounting for boundary conditions. Hence, the optimality system is used to construct a re-
duced gradient method, where we introduce a novel algorithm for the numerical realization
of the forward and the backward equations, based on exponential integrators. We illustrate
extensive numerical experiments on different control problems for collective motion in the
context of opinion formation, pedestrian dynamics, and mass transfer.

Keywords: mean-field control, multi-agent systems, PDE-constrained optimization, expo-
nential integrators (MSC2020: 65M22, 49M41, 93A16)

1 Introduction
The study of collective motion of interacting agents systems is of paramount importance to
understand the formation of coherent global behaviors at various scales, with applications to
the study of biological, social, and economic phenomena. In recent years, there has been a
surge of literature on the collective behavior of multi-agent systems, covering a wide range
of topics such as cell aggregation and motility, coordinated animal motion [28, 30], opinion
formation [36, 45, 55], coordinated human behavior [10, 27, 31, 48], and cooperative robots
[26, 34, 46, 47]. These fields are vast and constantly evolving and we refer to the surveys [8, 29,
39] that provide a comprehensive overview of recent developments. Modeling such complex
and diverse systems poses a significant challenge, since in general there are no first-principles
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as, for instance, in classical physics, or statistical mechanics. Nevertheless, the dynamics of
the individuals have been successfully described by systems of Ordinary Differential Equations
(ODEs) from Newton’s laws designing basic interaction rules, such as attraction, repulsion, and
alignments, or, alternatively, by considering an evolutive game where the dynamics is driven
by the simultaneous optimization of costs by N players such as in References [42, 43]. In this
context, of paramount importance for several applications is the design of centralized policies
able to optimally enforce a desired state of the agents, see for instance References [5, 6, 23].

In this paper, we consider a constrained setting, where interacting individuals are influenced
by a centralized control with selective action, i.e.,

dxi =

(
1
N

N

∑
j=1

p(xi,x j)(x j − xi)+ s(t,xi,ρ
N)ui

)
dt +σdW t

i , (1)

with initial data x0 = [x0
1, . . . ,x

0
N ]. Here, each agent xi ∈ Ω ⊆ Rd , for i = 1, . . . ,N, accounts

for pairwise interactions weighted by the function p(·, ·), and for disturbances modelled with
a Brownian motion dW t

i . The action of the control u = [u1, . . . ,uN ], ui ∈ Rd , is weighted by a
selective function s(t,xi,ρ

N), with ρN(x) the empirical measures associated to the interacting
agent system, i.e., ρN(t,x) = N−1

∑
N
i=1 δ (xi(t)− x). Then, the optimal control is obtained by

minimizing the cost functional

J(u;x0) = E

[∫ T

0

1
2N

N

∑
i=1

(
ℓ(t,xi,ρ

N)+ γ|ui|2
)]

, (2)

where ℓ(t,xi, f N) is a running cost to be designed by the controller, with a quadratic penalization
of the control for γ ≥ 0.

For a large number of agents, we can write the mean-field optimal control problem cor-
responding to the finite dimensional optimal control problem (1)–(2) as follows (see Refer-
ences [11, 32, 33])

min
u∈U

1
2

∫ T

0

∫
Ω

(
ℓ(t,x,ρ)+ γ|u|2

)
ρdxdt. (3a)

Here, U is the space of admissible controls and ρ is the density function satisfying the Partial
Differential Equation (PDE)∂tρ +∇ · ((P(ρ)+ s(t,x,ρ)u)ρ)− σ2

2
∆ρ = 0,

ρ(0,x) = ρ0(x).
(3b)

The non-local interactions among agents are described by the integral term

P(ρ)(t,x) =
∫

Ω

p(x,y)(y− x)ρ(t,y)dy (4)

and ρ0(x) is the initial distribution of the agents. Differently from mean-field games [1, 22, 43],
in this context the goal is to compute a mean-field optimal strategy capable of driving the pop-
ulation density to a specific target, avoiding the curse of dimensionality induced by the large
scale non-linear system of N agents. However, the numerical solution of the PDE-constrained
optimization problem (3a)–(3b) requires careful treatment, see Reference [15]. In mean-field
optimal control problems, various methodologies have been utilized to tackle the synthesis of
high-dimensional systems, as seen in References [2, 24, 33, 49]. In this study, we adopt a
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reduced gradient method strategy where the first order optimality system is solved iteratively
for the realization of the control, as in References [7, 12]. Major challenges arise from the
presence of the stiff diffusive and transport operators, and from the stability and storage re-
quirements originated by the choice of the numerical solvers. For these kinds of problems,
explicit time marching schemes usually require several time steps due to the lack of favorable
stability properties, while implicit ones need possibly expensive solutions of non-linear sys-
tems (see References [9, 37], where implicit multistep or Runge–Kutta methods are employed)
or linear systems (see Reference [40], where IMEX methods are proposed). A prominent and
effective alternative way to numerically integrate stiff equations in time is to employ explicit
exponential integrators, see Reference [41] for a seminal review. After semidiscretization in
space, these schemes require to approximate the action of exponential and of exponential-like
matrix functions (the so-called ϕ-functions), in contrast to the solution of (non-)linear systems.

The paper is structured as follows. In Section 2 we present a model of interest which
generalizes the one in formulas (3), and we derive the formal optimality conditions using the
associated Lagrangian function, obtaining a system of coupled PDEs. The first one is forward
in time for the density function, while the second is backward in time for the adjoint variable.
We numerically couple these equations using the steepest descent algorithm. In Section 3 we
present the semidiscretization in space of the forward and of the backward PDEs, together
with the numerical solution of the arising systems of ODEs using a pair of exponential inte-
grators. For convenience of the reader, we also present there the derivation of the schemes
and a brief discussion on common techniques to compute the involved matrix functions. Sec-
tion 4 is devoted to some numerical validations and simulations in opinion formation (Sznajd,
Hegselmann–Krause, and mass transfer) and pedestrian (see Reference [16]) models. We fi-
nally draw some conclusions in Section 5.

2 Mean-field selective optimal control problem
We consider the mean-field optimal control problem [7, 16, 32] defined by the functional min-
imization

min
u∈U

J (u;ρ0), (5a)

where ρ = ρ(t,x) ∈ R is a probability density of agents satisfying

∂tρ +∇ · [(P(ρ)+ s(t,x,ρ)u)ρ]− σ2

2
∆ρ = 0,

ρ(0,x) = ρ0(x),(
(P(ρ)+ s(t,x,ρ)u)ρ − σ2

2
∇ρ

)
· n⃗ =

{
βρ on ΓF,

0 on ΓZ

(5b)

and defined for each (t,x) ∈ [0,T ]×Ω. The evolution of the density is driven by the non-local
operator P(ρ)(t,x) ∈ Rd , as in equation (4), and by the control u = u(t,x) ∈ Rd weighted
by the selective function s(t,x,ρ) ∈ R. Here, we denoted by ΓF the subset of the boundary
in which there is a flux different from zero (β ̸= 0) and by ΓZ the part of ∂Ω with zero-flux
boundary conditions. These two subsets are such that ΓF ∪ΓZ = ∂Ω and ΓF ∩ΓZ = /0, and n⃗ is
the outward normal vector to the boundary with norm equal to one. Finally, the functional in
formula (5a) is given by

J (u;ρ0) =
1
2

∫ T

0

∫
Ω

(
e(t,x,ρ)+ γ|u|2ρ

)
dxdt +

1
2

∫
Ω

c(T,x,ρ(T,x))dx
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for a general running cost e(t,x,ρ) ∈ R and a terminal cost c(T,x,ρ(T,x)) ∈ R.

2.1 First order optimality conditions
We can derive the first order optimality conditions on a formal level using a Lagrangian ap-
proach. For a rigorous treatment we refer to References [7, 17]. We define the Lagrangian
function with adjoint variable ψ as

L (u,ρ,ψ) =
1
2

∫ T

0

∫
Ω

(
e(t,x,ρ)+ γ|u|2ρ

)
dxdt +

1
2

∫
Ω

c(T,x,ρ(T,x))dx

−
∫ T

0

∫
Ω

ψ

(
∂tρ +∇ · [(P(ρ)+ s(t,x,ρ)u)ρ]− σ2

2
∆ρ

)
dxdt.

(6)

The optimal solution (u∗,ρ∗,ψ∗) can be found by equating to zero the partial Fréchet deriva-
tives of the Lagrangian function, i.e., by solving the following system

DuL (u,ρ,ψ) = 0,
DψL (u,ρ,ψ) = 0,
DρL (u,ρ,ψ) = 0.

(7)

Before computing the partial derivatives in system (7), we integrate by parts the last term ap-
pearing in the Lagrangian function (6) and we get

L (u,ρ,ψ) =
1
2

∫ T

0

∫
Ω

(
e(t,x,ρ)+ γ|u|2ρ

)
dxdt +

1
2

∫
Ω

c(T,x,ρ(T,x))dx

+
∫ T

0

∫
Ω

ρ

(
∂tψ +

σ2

2
∆ψ +(P(ρ)+ s(t,x,ρ)u) ·∇ψ

)
dxdt

−
∫ T

0

∫
ΓF

ρ

(
σ2

2
∇ψ · n⃗+βψ

)
dbdt

−
∫

Ω

(ψ(T,x)ρ(T,x)−ψ(0,x)ρ(0,x))dx,

where we used the value of the boundary conditions appearing in equation (5b). Performing
then the computations of the partial derivatives we obtain the gradient direction for the control
variable u

DuL (u,ρ,ψ) = γu+ s(t,x,ρ)∇ψ, (8)

the forward PDE for the density function ρ

∂tρ +∇ · [(P(ρ)+ s(t,x,ρ)u)ρ]− σ2

2
∆ρ = 0,

ρ(0,x) = ρ0(x),(
(P(ρ)+ s(t,x,ρ)u)ρ − σ2

2
∇ρ

)
· n⃗ =

{
βρ on ΓF,

0 on ΓZ,

(9)
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and the backward PDE for the adjoint variable ψ

−∂tψ =
σ2

2
∆ψ +

(
P(ρ)+(s(t,x,ρ)+ρDρs(t,x,ρ))u

)
·∇ψ

+Q(ρ,ψ)+
1
2
(Dρe(t,x,ρ)+ γ|u|2),

ψ(T,x) = ψT (x),

σ2

2
∇ψ · n⃗ =

{
−βψ on ΓF,

0 on ΓZ,

(10)

where
Q(ρ,ψ)(t,x) =

∫
Ω

p(y,x)(x− y) ·∇ψ(t,y)ρ(t,y)dy

and ψT (x) = 1
2Dρc(T,x,ρ(T,x)). Now, in order to solve model (5), we employ a steepest

descent approach (see References [7, 12]). Starting with an initial control u0, at each iteration ℓ
we insert uℓ into the forward equation (9) and solve it for ρ = ρℓ+1. We then insert uℓ and ρℓ+1

into the backward equation (10) and solve it for ψ = ψℓ+1. We finally update the control by
using the gradient direction (8), i.e.,

uℓ+1 = uℓ−λ
ℓ(γuℓ+ s(t,x,ρℓ+1)∇ψ

ℓ+1)

and get uℓ+1. We proceed iterating until J (uℓ+1) has stabilized within a given tolerance. For
the numerical solution of equations (9) and (10) we use the method of lines: we first discretize
in space and then use appropriate integrators for the obtained systems of ODEs.

3 Numerical integrators for the semidiscretized equations
In this section, we explain how to solve the forward and the backward PDEs in the steepest
descent algorithm. By observing that both are semilinear parabolic equations, the idea is to
use numerical schemes tailored for this type of problems. A prominent way is to apply explicit
exponential integrators [41] to the systems of ODEs arising from the semidiscretization in
space of the PDEs. By construction, these schemes solve exactly linear ODEs systems with
constant coefficients and they allow for time steps usually much larger than those required by
classical explicit methods, i.e., typically they do not suffer from a CFL restriction. On the
other hand, this class of integrators requires the computation of the action of exponential-like
matrix functions for which different efficient techniques have been developed in recent years
(see Section 3.3).
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3.1 Forward PDE
For the sake of clarity, and since we will present later on one-dimensional numerical examples,
we consider Ω = [a,b] and we rewrite the forward PDE (9)

∂tρ(t,x) =
σ2

2
∂xxρ(t,x)−∂x ((P(ρ(t, ·))(t,x)+ s(t,x,ρ(t,x))u(t,x))ρ(t,x)) ,

ρ(0,x) = ρ0(x),(
(P(ρ(t, ·))(t,x)+ s(t,x,ρ(t,x))u(t,x))ρ(t,x)− σ2

2
∂xρ(t,x)

)∣∣∣∣
a
= βaρ(t,a),(

(P(ρ(t, ·))(t,x)+ s(t,x,ρ(t,x))u(t,x))ρ(t,x)− σ2

2
∂xρ(t,x)

)∣∣∣∣
b
= βbρ(t,b),

where βa,βb ∈ R can be selected so that it is possible to express both zero and nonzero fluxes.
Notice that when we solve this equation we consider u(t,x) a given function. We introduce a
semidiscretization in space by finite differences on a grid of points xi, with i= 1, . . . ,n, in such a
way that ρρρ(t) = [ρ1(t), . . . ,ρn(t)]T is the unknown vector whose components ρi(t) approximate
ρ(t,xi). Now, by denoting D1 and D2 the matrices which discretize ∂x and ∂xx at the grid points,
respectively, and P the discretization of the linear integral operator P by a quadrature formula,
the linear part of the right hand side of the equation is discretized by

σ2

2
D2ρρρ(t),

while the non-linear part becomes

− (D1Pρρρ(t))ρρρ(t)− (Pρρρ(t))(D1ρρρ(t))
− (D1sss(t,ρρρ(t)))uuu(t)ρρρ(t)− sss(t,ρρρ(t))(D1uuu(t))ρρρ(t)− sss(t,ρρρ(t))uuu(t)(D1ρρρ(t)).

Now, we also discretize the boundary conditions with finite differences by using virtual nodes,
and we modify accordingly both the linear part and the non-linear one. The resulting non-linear
system of ODEs is then {

ρρρ
′(t) = AFρρρ(t)+gggF(t,ρρρ(t)), t ∈ [0,T ],

ρρρ(0) = ρρρ0.
(11)

Given a time discretization [t0, . . . , tk, . . . , tm], with t0 = 0 and tm = T , the exact solution of
system (11) at time tk+1 can be expressed using the variation-of-constants formula, i.e.,

ρρρ(tk+1) = eτkAFρρρ(tk)+
∫

τk

0
e(τk−s)AFgggF(tk + s,ρρρ(tk + s))ds,

where τk = tk+1 − tk, for k = 0, . . . ,m− 1. In order to obtain an explicit first order numerical
scheme, we denote by ρρρk the approximation of ρρρ(tk) and approximate the non-linear function
gggF(tk + s,ρρρ(tk + s)) with gggF(tk,ρρρk). Hence, we have

ρρρ(tk+1)≈ ρρρk+1 = eτkAFρρρk +
∫

τk

0
e(τk−s)AFgggF(tk,ρρρk)ds

= eτkAFρρρk +

(∫
τk

0
e(τk−s)AFds

)
gggF(tk,ρρρk)

= eτkAFρρρk +

(
τk

∫ 1

0
eτk(1−θ)AFdθ

)
gggF(tk,ρρρk)

= eτkAFρρρk + τkϕ1(τkAF)gggF(tk,ρρρk).

(12)
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Here, we introduced the exponential-like function

ϕ1(X) =
∫ 1

0
e(1−θ)X dθ ,

with X ∈ Cn×n a generic matrix. This scheme is known as exponential Euler, it is an explicit
method of first (stiff) order and it is A-stable by construction. Although its implementation does
not need the solution of (non-)linear systems, at each time step it is required the evaluation of
a linear combination of type eτkX vvvk + τkϕ1(τkX)wwwk, where vvvk,wwwk ∈ Cn are suitable vectors,
which we will address in Section 3.3.

3.1.1 Selective function independent of the density

A remarkable occurrence in the literature is s(t,x,ρ(t,x)) = s(t,x), i.e., the selective function
does not depend on the density (see Reference [7] for the case s(t,x) = 1, which we will also
consider in the numerical examples). In this case, the linear part of the forward equation has
time dependent coefficients(

σ2

2
D2 − (D1sss(t))uuu(t)− sss(t)(D1uuu(t))− sss(t)uuu(t)D1

)
ρρρ(t),

while the non-linear part is now given by

−(D1Pρρρ(t))ρρρ(t)− (Pρρρ(t))(D1ρρρ(t)).

By modifying accordingly the quantities to impose the boundary conditions, and using again
the previous notation for simplicity, we end up with the system of ODEs{

ρρρ
′(t) = AF(t)ρρρ(t)+gggF(t,ρρρ(t)), t ∈ [0,T ],

ρρρ(0) = ρρρ0.
(13)

At each tk we can rewrite equivalently this system as
ρρρ
′(t) = AF(tk)ρρρ(t)+(AF(t)−AF(tk))ρρρ(t)+gggF(t,ρρρ(t))

= AF(tk)ρρρ(t)+gggk
F(t,ρρρ(t)),

ρρρ(0) = ρρρ0

and apply the exponential Euler method, as done for system (11). Thus, we end up with the
scheme

ρρρ(tk+1)≈ ρρρk+1 = eτkAF(tk)ρρρk + τkϕ1(τkAF(tk))gggk
F(tk,ρρρk)

= eτkAF(tk)ρρρk + τkϕ1(τkAF(tk))gggF(tk,ρρρk),
(14)

for k = 0, . . . ,m− 1. As for the general case s(t,x,ρ(t,x)), we obtain in this way an explicit
method of first order (which we call exponential Euler–Magnus) that requires again to evaluate
a linear combination of actions of the matrix exponential and the matrix ϕ1 function.
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3.2 Backward PDE
We rewrite the backward PDE (10) in the one-dimensional case Ω = [a,b]

−∂tψ(t,x) =
σ2

2
∂xxψ(t,x)+P(ρ(t, ·))(t,x)∂xψ(t,x)

+(s(t,x,ρ(t,x))+ρ(t,x)sρ(t,x,ρ(t,x)))u(t,x)∂xψ(t,x)

+Q(ρ(t, ·),ψ(t, ·))(t,x)+ 1
2
(
eρ(t,x,ρ(t,x))+ γu2(t,x)

)
,

ψ(T,x) = ψT (x),

σ2

2
∂xψ(t,x)

∣∣
a =−βaψ(t,a),

σ2

2
∂xψ(t,x)

∣∣
b =−βbψ(t,b),

where sρ(t,x,ρ(t,x)) = Dρs(t,x,ρ(t,x)) and eρ(t,x,ρ(t,x)) = Dρe(t,x,ρ(t,x)). Here, we as-
sume that ρ(t,x) and u(t,x) are given functions. By applying a finite difference discretization
on the same spatial grid as above and defining Q the discretization of the linear integral opera-
tor Q, we obtain the time dependent coefficient linear part(

σ2

2
D2 +Pρρρ(t)D1 +(sss(t,ρρρ(t))+ρρρ(t)sssρρρ(t,ρρρ(t)))uuu(t)D1 +Qρρρ(t)D1

)
ψψψ(t)

and the source term
1
2

eeeρρρ(t,ρρρ(t))+ γuuu2(t).

Finally, by taking into consideration boundary conditions, we end up with the inhomogeneous
time dependent coefficient linear system of ODEs{

−ψψψ
′(t) = AB(t)ψψψ(t)+gggB(t), t ∈ [0,T ],

ψψψ(T ) = ψψψT .
(15)

By considering the same time discretization [t0, . . . , tk+1, . . . , tm] as above, system (15) has a
similar structure to system (13). Hence, taking into account that we are marching backward in
time, we apply the exponential Euler–Magnus method and we obtain the time marching

ψψψ(tk)≈ ψψψk = eτkAB(tk+1)ψψψk+1 + τkϕ1(τkAB(tk+1))gggB(tk+1), (16)

for k = m−1,m−2, . . . ,0.

3.3 Matrix functions evaluation
We have introduced two exponential integrators that require the evaluation of

eτX vvv+ τϕ1(τX)www, (17)

at each time step, where τ > 0, X ∈Rn×n, and vvv,www ∈Rn. We stress that these quantities depend
in general on the current time step, but for simplicity of notation we dropped the subscripts.
If we choose a uniform time discretization, i.e., τk = τ , in the exponential Euler scheme (12)
we can compute once and for all the matrices eτAF and ϕ1(τAF) and then multiply by the
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corresponding vectors. In this case, for the matrix function approximations the most common
techniques are Taylor expansions or Padé rational approximations with scaling and squaring
(see, for instance, References [3, 18, 52, 53]). This approach is computationally attractive only
for matrices of moderate size, taking into account also that the resulting matrix functions are
full even if the original ones were sparse. When employing the exponential Euler–Magnus
schemes (14) and (16), we can still pursue this approach. However, since here the matrices
change at each time step, we need to recompute the matrix functions every time accordingly. It
is also possible to compute linear combination (17) by using a single slightly augmented matrix
function evaluation. In fact, thanks to [50, Proposition 2.1], we have that the first n rows of

exp
(

τ

[
X www

0 . . .0 0

])[
vvv
1

]
coincide with vector (17). This is an attractive choice in a variable step size scenario, in which
both the forward and the backward equations could be solved by a single matrix function eval-
uation at each time step.

When X is a large sized and sparse matrix, it may be convenient to compute directly vec-
tor (17) at each time step without explicitly computing the matrix exponential. State-of-the-art
techniques follow this approach and are based on Krylov methods or direct interpolation poly-
nomial methods (see, for instance, References [4, 20, 35, 44]).

4 Numerical experiments
We present in this section several numerical examples arising from different choices of param-
eters and functions in the continuous model (5). In particular, we consider numerical exper-
iments for two different classes of multi-agent systems in opinion formation and pedestrian
dynamics, and a mass transfer problem. In all cases, we discretize in space with second order
centered finite differences and we employ the trapezoidal rule for the quadrature of the integral
operators. All the numerical experiments have been performed on an Intel® Core™ i7-10750H
CPU with six physical cores and 16GB of RAM, using MATLAB programming language. As
a software, we use MathWorks MATLAB® R2022a. In order to compute the needed actions
of exponential and ϕ1-function, we employ the kiops function1, which is based on the Krylov
method and whose underlying algorithm is presented in Reference [35]. The code used for the
simulations, accompanied by a detailed description, can be found in a GitHub repository2. In
particular, it allows to reproduce the figures of all the following numerical experiments.

4.1 Control in opinion dynamics
In this section we consider two models for control of opinion dynamics, namely the Sznajd and
the Hegselmann–Krause (bounded confidence) ones, similarly to References [7, 38, 54]. We
set both models in the spatial domain Ω = [−1,1], whose boundaries represent the extremal
opinions. The running cost is e(t,x,ρ) = (x− xd)

2ρ and the selective function s(t,x,ρ) is set
to the constant 1 (hence, we use the exponential Euler–Magnus scheme (14) for the forward
equation). For both the problems we consider in model (5) zero-flux boundary conditions
everywhere and null terminal cost function c(T,x,ρ(T,x)) = 0.

1https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/, commit 94149844.
2https://github.com/cassinif/expint_mfsoc, commit a7b6748.
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4.1.1 Sznajd model

In the first numerical experiment we present an example of Sznajd model for opinion formation
taken from Reference [7]. In particular, we consider the interaction function p(x,y) = x2 −1,
representing a repulsive interaction, and the target point in the running cost xd =−0.5. More-
over, we set the penalization parameter γ = 0.5 and the diffusion coefficient σ =

√
0.02. The

initial density function is of bimodal type

ρ0(x) =C(ρ+(x+0.75;0.05,0.5)+ρ+(x−0.5;0.15,1)),

where

ρ+(x;a,b) = max
{
−
(x

b

)2
+a,0

}
and C defined so that

∫
Ω

ρ0(x)dx = 1.
First of all, we show that the expected temporal rate of convergence of the exponential inte-

grators is preserved also after a complete solution of the model. In fact, for a semidiscretization
in space with n = 200 uniform grid points, we solve several times model (5) by the steepest
descent method described at the end of Section 2 by employing an increasing sequence of time
steps, ranging from m = 300 to m = 700. Each time, after the stabilization of the functional J ,
we measure the error at the final time T = 4 for ρρρ(t) and at initial time for ψψψ(t) with respect
to reference solutions. We display in Figure 1 the obtained relative errors, which confirm the
expected accuracy and rate of convergence.
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Figure 1: Relative errors in the infinity norm of ρρρ(T ) (T = 4, left plot) and ψψψ(0) (right plot),
with respect to a reference solution, for the Sznajd model described in Section 4.1.1 with n =
200 spatial discretization points and varying number of time steps m. A black dashed reference
line of slope −1 is also displayed.

Then, we show the behavior of the Sznajd model in opinion formation. For this purpose we
use a spatial discretization of n = 800 points and m = 200 time steps. Notice that we decide
to employ a relatively large number of discretization points in space to highlight the fact that
the exponential integrators do not exhibit any CFL restriction, in contrast to standard explicit
methods. In Figures 2 and 3 we show the evolution of the density ρ(t,x) and of the control
u(t,x). The results have the expected behavior of concentration of the opinions around the target
point xd =−0.5 and qualitatively match the analogous simulation available in the literature [7].
Moreover, we show in Figure 4 the value of the functional J (uℓ) at the successive iterations
of the steepest descent method. We observe that the method needs 23 iterations to reach the
input tolerance 2 · 10−3. Finally, the overall computational time of this simulation is about 40
seconds.
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Figure 2: Density functions at initial time and at final time for the Sznajd model described in
Section 4.1.1 with n = 800 spatial discretization points and m = 200 time steps. For visualiza-
tion reasons, the densities are displayed each tenth point.
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Figure 3: Evolution of the density ρ(t,x) (left) and of the control u(t,x) (right) up to the final
time T = 8 for the Sznajd model described in Section 4.1.1 with n = 800 spatial discretization
points and m = 200 time steps.

4.1.2 Hegselmann–Krause model

In the second numerical experiment we present an example of Hegselmann–Krause model for
opinion formation taken from Reference [7]. In particular, we take the interaction function
p(x,y) = χ{|x−y|≤κ}(x,y), with κ = 0.15, and the target point in the running cost xd = 0. More-
over, we set the penalization parameter γ = 2.5 and the diffusion coefficient σ =

√
0.002. The

initial density function is
ρ0(x) =C(0.5+ ε(1− x2)),

where ε = 0.01 and C defined so that
∫

Ω
ρ0(x)dx = 1. For this model, we directly present the

results using a spatial discretization of n = 1000 points and m = 100 time steps up to the final
time T = 10. In Figures 5 and 6 we display the evolution of the density ρ(t,x) and of the
control u(t,x). Similarly to the Sznajd model, the results match both the expectations and the
outcomes in the literature. Then, we display in Figure 7 the value of the functional J (uℓ) at
the successive iterations of the steepest descent method. We observe that the method needs 15
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Figure 4: Value of the functional J (uℓ) at the successive iterations of the steepest descent
method for the Sznajd model described in Section 4.1.1 (n = 800 and m = 200).

iterations to reach the input tolerance 2 ·10−3. Finally, this simulation takes roughly 15 seconds
to run.
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Figure 5: Density functions at initial time and at final time for the Hegselmann–Krause model
described in Section 4.1.2 with n = 1000 spatial discretization points and m = 100 time steps.
For visualization reasons, the densities are displayed each fifth point.

4.2 Crowd dynamics: fast exit scenario
In this section we consider a model for crowd dynamics taken from Reference [16]. We set the
model in the spatial domain Ω = [−1,1], whose boundaries represent the exit doors. The non-
local interaction kernel p(x,y) is null and the selective function s(t,x,ρ) is 1−ρ (hence, we
employ the exponential Euler method (12) for the forward equation). The diffusion parameter
is σ =

√
0.04, the exit intensity flux is β = 10, the penalization parameter is γ = 1, and the

running cost is e(t,x,ρ) = ρ . The initial density function models the presence of two distinct
groups, namely ρ0(x) = 0.9e−100(x+0.4)2

+0.65e−150x2
.

Similarly to the opinion dynamics case, we first show that the expected temporal rate of
convergence of the exponential integrators is preserved after a complete solution of the model.
To this purpose, we discretize this problem with n = 200 spatial discretization points and with
different number of time steps, from m = 300 to m = 700, up to the final time T = 2. After
the stabilization of the functional J in the steepest descent algorithm, we measure the error at
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Figure 6: Evolution of the density ρ(t,x) (left) and of the control u(t,x) (right) up to the final
time T = 10 for the Hegselmann–Krause model described in Section 4.1.2 with n= 1000 spatial
discretization points and m = 100 time steps.
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Figure 7: Value of the functional J (uℓ) at the successive iterations of the steepest descent
method for the Hegselmann–Krause model described in Section 4.1.2 (n = 1000 and m = 100).

final time for ρρρ(t) and at initial time for ψψψ(t) with respect to reference solutions. We display
in Figure 8 the obtained relative errors which again confirm the expected accuracy and rate of
convergence.

Then, we solve the same model up to the final time T = 3 and show its behavior. We
discretize this problem with n = 1000 spatial discretization points and m = 250 time steps. We
show the evolution of the density and of the control in Figures 9 and 10, where we can clearly
see the exit of the crowd from the two doors. Moreover, we show in Figure 11 the value of
the functional J (uℓ) at the successive iterations of the steepest descent method. We observe
that the method needs 13 iterations to reach the input tolerance 2 · 10−3. Finally, the overall
computational time of this simulation is about 45 seconds.

4.3 Mass transfer problem via optimal control
In this final example, we present an optimal control approach to a mass transfer problem, see for
instance References [13, 51], where the particle density accounts for non-local interactions [14,
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Figure 8: Relative errors in the infinity norm of ρρρ(T ) (T = 2, left plot) and ψψψ(0) (right plot),
with respect to a reference solution, for the pedestrian model described in Section 4.2 with
n = 200 spatial discretization points and varying number of time steps m. A black dashed
reference line of slope −1 is also displayed.
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Figure 9: Density functions at initial time and at final time for the two-group crowd model
described in Section 4.2 with n = 1000 spatial discretization points and m = 250 time steps.
For visualization reasons, the densities are displayed each tenth point.

25]. Hence, the goal is to move the initial density function in the spatial domain Ω = [−1,1]

ρ0(x) =Ce−(x−µ0)
2/(2σ2

0 ),

where µ0 = 0, σ0 = 0.1, and C is defined so that
∫

Ω
ρ0(x)dx = 1, to a target one

ρ̄(x) = C̄
(

e−(x−µ1)
2/(2σ2

1 )+ e−(x−µ2)
2/(2σ2

2 )
)
,

where µ1 = 0.5, σ1 = 0.1, µ2 = −0.3, and σ2 = 0.15, and C̄ is defined so that
∫

Ω
ρ̄(x)dx =

1. The boundary conditions are of zero-flux type, the running cost is e(t,x,ρ) = (ρ − ρ̄)2,
the interaction kernel is of Sznajd type p(x,y) = (x2 − 1)/20, and the selective function is
s(t,x,ρ) = 1. The penalization parameter is γ = 0.1 and the diffusion parameter is σ =

√
0.02.

We discretize the problem with n = 1000 spatial grid points and m = 200 time steps, and
we run the simulation up to the final time T = 3. We consider a terminal cost given by
c(T,x,ρ(T,x)) = (ρ(T,x)− ρ̄(x))2, which translates into ψT (x) = ρ(T,x)− ρ̄(x). In Figure 12
we plot the density functions at initial and final time, and we can observe that the initial density
is correctly transported to the target one. In addition, in Figure 13 we present the evolution
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Figure 10: Evolution of the density ρ(t,x) (left) and of the control u(t,x) (right) up to the final
time T = 3 for the two-group crowd model described in Section 4.2 with n = 1000 spatial
discretization points and m = 250 time steps.
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Figure 11: Value of the functional J (uℓ) at the successive iterations of the steepest descent
method for the two-group crowd model described in Section 4.2 (n = 1000 and m = 250).

of the density and of the control. Finally, we show in Figure 14 the values of the functional
J (uℓ) at the successive iterations of the steepest descent method. We observe that the method
needs 33 iterations to reach the input tolerance 2 ·10−3, with an overall computational time of
this simulation of roughly 75 seconds.

5 Conclusions
We presented a mean-field optimal control model where the constraint is represented by a
non-linear PDE with non-local interaction term and diffusion describing the evolution of a con-
tinuum of agents. We provide, at a formal level, first order optimality conditions, resulting
in a forward–backward coupled system with associated boundary conditions. Thus, a reduced
gradient method is derived for the synthesis of the mean-field control, where the primal and ad-
joint equations are efficiently solved by using exponential integrators. Our proposed approach
has been successfully tested on various examples from the literature, including models of opin-
ion formation and pedestrian dynamics in the one-dimensional setting. In future works we
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Figure 12: Density functions at initial time and at final time for the mass transfer problem
described in Section 4.3 with n = 1000 spatial discretization points and m = 200 time steps.
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Figure 13: Evolution of the density ρ(t,x) (left) and of the control u(t,x) (right) up to the
final time T = 3 for the mass transfer problem described in Section 4.3 with n = 1000 spatial
discretization points and m = 200 time steps.
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Figure 14: Value of the functional J (uℓ) at the successive iterations of the steepest descent
method for the mass transfer problem described in Section 4.3.
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plan to exploit the efficiency of exponential integrators to tackle higher dimensional problems
(possibly using ad hoc techniques for tensor structured problems [19, 20, 21]) and scenarios
where a fine spatial discretization is required to correctly capture the behavior of the controlled
dynamics.
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Abstract

The multinode Shepard method is an extension of inverse distance weighting, devel-
oped as a generalization of the triangular Shepard method to further improve interpolation
accuracy in situations where the classic Shepard method results are limited. In particular,
it considers multiple nodes for local interpolation, offering greater flexibility and improved
accuracy in estimates. In this paper, we present two algorithms for computing the multin-
ode Shepard interpolant, providing the related pseudocodes and MATLAB implementa-
tions.

Keywords: Multivariate Lagrange interpolation, Multinode Shepard method, Rational In-
terpolant, (MSC2020: 65D05, 41A05, 41A20)

1 Introduction
The approximation of scattered data is a crucial technique in modern science and engineering,
enabling the extraction of significant information from incomplete or irregularly distributed
data sets. One method for interpolating such data is Shepard’s method.

The classical Shepard operator reconstructs a function through a weighted combination of
its values at data points. The weights are the normalization of the inverse distances from the
approximation point to the nodes. The nodes are scattered, that is, without any particular struc-
ture. More precisely, let X = {xxx1, . . . ,xxxn} be a set of nodes in R2, and f : R2 → R the function
for which only the evaluations fi = f (xxxi) at the nodes are known. The Shepard operator [15] is
defined as

Sµ [ f ](xxx) =
n

∑
i=1

Aµ,i(xxx) fi, xxx ∈ R2, (1)
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where

Aµ,i(xxx) =
∥xxx− xxxi∥−µ

n

∑
j=1

∥∥xxx− xxx j
∥∥−µ

, xxx ∈ R2, (2)

where µ > 0 is a control parameter and ∥·∥ denotes the Euclidean norm.
The Shepard operator interpolates the data fi at the nodes xxxi, even though it presents, for

u > 1, flat spots in the neighborhood of all data point (which become cusps if u ≤ 1). Moreover,
it has a reproduction degree of zero, meaning it exclusively reproduces constant polynomials.
This last property strongly influences the accuracy of the approximation provided by the Shep-
ard interpolant, which converges to the function f with at most linear speed [13]. In order to
overcome these limitations, several modifications have been proposed over the years [4].

The first significant modification of the Shepard operator is due to Little [14], who, based on
the general idea of defining interpolants through convex combinations, proposed the following
improvement. He considered a triangulation T =

{
t j
}s

j=1 of the set X and replaced the values
fi in the expression of the Shepard operator (1) with the evaluations L j(xxx) of the linear poly-
nomials interpolating at the vertices of each triangle t j. Furthermore, he replaced the classical
weight functions (2), obtained from the normalization of the inverse distances from individual
nodes xxxi, with the product of the normalized inverse distances from the vertices xxx j1 , xxx j2 , xxx j3 of
each triangle t j. The resulting operator, known as the triangular Shepard operator, interpolates
the data fi at the nodes xxxi and reproduces the polynomials up to degree 1. The formal definition
is as follows

Kµ [ f ](xxx) =
s

∑
j=1

Bµ, j(xxx)L j(xxx), xxx ∈ R2, (3)

where

Bµ, j(xxx) =

3
∏

l=1

∥∥xxx− xxx jl

∥∥−µ

s
∑

k=1

3
∏

l=1

∥∥xxx− xxxkl

∥∥−µ

, xxx ∈ R2. (4)

This deep modification of the Shepard operator aims to improve the accuracy and robustness
of scattered data interpolation. The properties of the triangular Shepard operator have been
extensively studied in [7]. In particular, the quadratic convergence of the triangular Shepard
interpolant to the function f has been demonstrated, both in the case of regular triangulations,
such as Delaunay, and in the case of compact triangulations, which do not exclude the inter-
section of triangles in common parts that are not only vertices or adjacent sides. This latter
observation has paved the way for the not easy generalization of the classical Shepard oper-
ator, aiming to further increase the polynomial precision and, consequently, the accuracy of
the approximation. This generalization, known as the multinode Shepard operator, has been
proposed in a series of papers first dealing with the hexagonal case in R2 [6] and the tetrahedral
case in R3 [3], relying on local barycentric coordinate systems, and then the general case in [8],
exploiting a new representation of the local interpolation polynomial in Taylor form, centered
at the barycenter of the local system of interpolation nodes [9].

In this paper, we present and discuss two algorithms for the computation of the multinode
Shepard method. The paper is organized as follows. In Section 2 we recall the definition of
the multinode Shepard operator and describe its properties. In Section 2.1 we present two
algorithms for the implementation of the multinode Shepard method. In section 2.2 we give the
Matlab implementation of the two codes. In Section 2.3 we report some numerical experiments
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to test the effectiveness of the proposed algorithms. Finally, in Section 3 we summarize the
benefits of the multinode Shepard method in terms of accuracy and computational efficiency.

2 Multinode Shepard method
Let Ω ⊂ Rd , d ≥ 2, a non-empty connected open set, ∂Ω its boundary, X = {xxxi}n

i=1 ⊂ Ω∪
∂Ω a finite set of pairwise distinct scattered nodes and f = { fi}n

i=1 a set of function values
associated to X . Let r ∈ N and m =

(r+d
d

)
= dim

(
Pr(Rd)

)
, where Pr(Rd) denotes the space

of polynomials of d variables of total degree ≤ r.
We assume that a set {σ j}s

j=1 is given, such that for each j = 1, . . . ,s, σ j = {xxx jk}m
k=1 ⊂ X

is unisolvent for the polynomial space Pr(Rd) and

s⋃
j=1

σ j = X (5)

(to shorten the notation, for each j = 1, . . . ,s, we are denoting with jk = ϕ j(k) the image of
k ∈ {1, . . . ,m} by an injective map ϕ j from {1, . . . ,m} into {1, . . . ,n}).

A convenient way to represent the unique polynomial Pj ∈ Pr(Rd), j = 1, . . . ,s, interpo-
lating on σ j = {xxx j1, . . . ,xxx jm} the data { f j1, . . . , f jm} is given by the

Pj(xxx) =
m

∑
k=1

ℓ j,k(xxx) f jk , xxx ∈ Rd,

where
ℓ j,k (xxx) = ∑

|α|≤r
a( j,k)

α

(
xxx− xxx(b)j

)α

(6)

are the Lagrange fundamental polynomials written in the Taylor basis centered at the barycenter
xxx(b)j of σ j and α ∈Nm∪{(0, . . . ,0)} is a multi-index (for more details see [9]). As well-known,
the fundamental Lagrange polynomials satisfy the Kronecker delta property

ℓ j,k
(
xxx jl

)
= δkl, j = 1, . . . ,s; k, l = 1, . . . ,m. (7)

The multinode inverse distance weighted functions based on the covering {σ j}s
j=1 are defined

as follows [5]

Wµ, j (xxx) =

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ

s
∑

l=1

m
∏

λ=1

∥∥xxx− xxxlλ

∥∥−µ
, j = 1, . . . ,s, µ > 0. (8)

The multinode functions form a partition of unity

s

∑
j=1

Wµ, j (xxx) = 1, xxx ∈ Rd, (9)

and satisfy the following interpolation properties

Wµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑
j∈Ji

Wµ, j (xxxiii) = 1, (10)
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where we set
Ji = { j ∈ {1, . . . ,s} : xxxi ∈ σ j}, i = 1, . . . ,n.

In addition, if µ > 2 the multinode functions Wµ, j (xxx) satisfy the following differential proper-
ties

∇Wµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑
j∈Ji

∇Wµ, j (xxxi) = 0, (11)

and
HWµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑

j∈Ji

HWµ, j (xxxi) = 0, (12)

where, as usual, ∇Wµ, j (xxx) and HWµ, j (xxx) denote the gradient and the Hessian matrix of Wµ, j(xxx),
respectively. Finally, they are rational functions without real singularities if µ is an even integer
(for more details, see [5]).

The multinode Shepard operator is a blend of the local interpolation polynomials realized
by using multinode functions as follows

Mµ [ f ] (xxx) =
s

∑
j=1

Wµ, j (xxx)Pj (xxx) =

s
∑
j=1

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ Pj (xxx)

s
∑
j=1

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ
. (13)

Since the property (9) Mµ [·] reproduces polynomials of d variables of total degree ≤ r, while
(10) imply that Mµ [ f ] interpolates data fi at xxxi, i = 1, . . . ,n. Moreover, by assuming that the
set X is contained in a compact convex domain Ω and that the function f is of class Cr(Ω)
with partial derivatives Lipschitz-continuous of order r, as proven in [5, Theorem 3.1], the
multinode Shepard operator has an approximation accuracy of O(hp+1) for each µ > d+p+1

m .
Here h denotes the fill distance of the set X .

From equation (13) it follows that the multinode Shepard operator is not uniquely defined,
depending on the particular covering

{
σ j
}s

j=1 of X . The existence of such a covering is almost

surely guaranteed [11]. A straightforward determination of
{

σ j
}s

j=1 can be done by consid-
ering, for each scattered point xxxi, the set of m + q, q > 0, nearest points and by choosing,
among them, the subset of m points for which the local approximation to the function f (xxx)
provided by the polynomial Pj(xxx) is near to the optimal one [10]. For i ̸= i′, by denoting with
σ(xxxi) and σ(xxxi′) the subsets determined starting from the interpolation nodes xxxi and xxxi′ , re-
spectively, we have σ j = σ(xxxi) and σ j′ = σ(xxxi′), j ̸= j′, if σ(xxxi) ̸= σ(xxxi′), otherwise we set
σ j = σ(xxxi) = σ(xxxi′). While ensuring the covering condition, this procedure leads to an overly
expensive definition of the multinode Shepard operator, due to the large number of terms in the
sum (13).

In the following, we specialize in the case d = 2. Algorithms for general dimensions d > 2
can be obtained using the given approaches.

2.1 Pseudo-codes of two algorithms for the implementation of the multin-
ode Shepard method

In this section, we present two algorithms for the computation of the multinode Shepard method.
The Algorithm 1, based on the procedure mentioned above, chooses in the set of m+q, q > 0,
nearby nodes to xxxi, the m discrete Leja points computed by the algorithm presented in [1]. This
algorithm is based on the PA = LU factorization of the Gram matrix. The set σ j consists of the
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points related to the first m rows after the PA = LU factorization. Gaussian elimination with
row pivoting performs a greedy optimization (i.e. not precise but still valid) of the Vander-
monde determinant, iteratively searching for the new row (i.e. selecting the new interpolation
point) such that the modulus of the increased determinant is maximized.

To speed up Algorithm 1 and reduce its computational cost, we introduce Algorithm 2. The
key point of Algorithm 2 is to drastically reduce the number of subsets σ j. Specifically, we
create a copy X ′ = {xxx1, . . . ,xxxn} of the node set X , whose first node is xxx1. In the process of
determination of the covering

{
σ j
}s

j=1, the set X remains fixed and is used to determine the
subset Ni of the nearby nodes to xxxi. We reorder the nodes of Ni according to their increasing
distances from xxxi, with xxxi being the first node of X ′. At the j-th step this rearrangement allows
the identification of the subset σ j by using the procedure stated in Algorithm 1, that is through
the PA = LU factorization of the Gram matrix. The subset σ j is then subtracted from X ′, by
maintaining the initial order of the nodes. Since at the step j+1 the new set X ′ = X ′ \σ j will
no longer contain xxxi but a new first node xxxi′ , the procedure ends when X ′ is empty.

To determine Ni, we set M(Ω) the Lebesgue measure of Ω, ℓ =

√(r+1+2
2

)
M(Ω)

n
and

Qi(ρ) =
[
xi − ρ

2 ,xi +
ρ

2

]
×
[
yi − ρ

2 ,yi +
ρ

2

]
, ρ > 0. Then

Ni = X ∩Qi(ℓ(1+ k/10)) (14)

where k is the first non-negative integer such that #(Ni)≥
(r+1+2

2

)
= dim

(
Pr+1(R2)

)
.

Algorithm 1 The multinode Shepard method with a m-tuple associated to each xxxi

Require: X = {xxxi}n
i=1, the set of scattered points

f = { fi}n
i=1, the set of function values

r, the degree of the local polynomial interpolants
q, with m+q the number of nearest neighbour points for determining

{
σ j
}s

j=1
µ , the power parameter for the computation of (8)
xxx, the set of approximation points

Ensure: f (xxx), approximations of the function f at the points of xxx

1: Set Num, the numerator of the multinode Shepard operator (13), equal to 0
2: Set Den, the denominator of the multinode Shepard operator (13), equal to 0
for i = 1, . . . ,n do

3.1: Compute the vector Dn containing the distances between the i-th node and all other nodes
3.2: Sort Dn according to the increasing distances from xxxi
3.3: Consider the m+ q nearest points to xxxi and choose, among them, the subset σ j of m

discrete Leja points by using the algorithm proposed in [1]
if the subset σ j has not been yet considered then

4.1: Compute the polynomial interpolant of f based on the points of σ j
4.2: Compute the j-th term of the numerator and of the denominator of the multinode

operator (13) and sum them up to Num and Den, respectively
end if

end for
5: Compute the multinode Shepard operator as the ratio between Num and Den
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Algorithm 2 The multinode Shepard method with minimized number of m-tuples
Require: X = {xxxi}n

i=1, the set of scattered points
f = { fi}n

i=1, the set of function values
r, the degree of the local polynomial interpolants
xxx, the set of approximation points

Ensure: f (xxx), approximations of the function f at the points of xxx

1: Compute ℓ =

√
(r+1+2

2 )M(Ω)

n , the length of the side of the square to determine the set of
nearby points
2: Create a copy X ′ of X .
3: Set Num, the numerator of the multinode Shepard operator (13), equal to 0
4: Set Den, the denominator of the multinode Shepard operator (13), equal to 0
5: Set i equal to 0
while X ′ ̸= /0 do

6.1: Compute the set Ni = X ∩Qi(ℓ)
6.2: Set k equal to 1
while #(Ni)<

(r+1+2
2

)
do

7.1: Compute the set Ni = X ∩Qi(ℓ(1+ k/10))
7.2: Update k to k+1

end while
8: Sort Ni according to the increasing distances between the first node xxx′i of X ′ and all nodes

in Ni

9: Choose the among the points in the ordered Ni, the subset σ j of m discrete Leja points
by using the algorithm proposed in [1]

if the subset σ j has not been yet considered then
10.1: Compute the polynomial interpolant of f based on the points of σ j
10.2: Compute the j-th term of the numerator and of the denominator of the multinode

operator (13) and sum them up to Num and Den, respectively
11: Update i to i+1

end if
end while
12: Compute the multinode Shepard operator as the ratio between Num and Den
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2.2 MATLAB code
In this section we describe the MATLAB functions and demos available collected in a package
named Multinode_Shepard freely available at [12].

2.2.1 Function Multinode_Shepard1.m

The function Multinode_Shepard1.m implements the Multinode Shepard method as described
by the pseudocode Algorithm 1. In particular, we have the following Input and Output argu-
ments:

INPUT:

• xn (double array): vector of the x-coordinates of the nodes

• yn (double array): vector of the y-coordinates of the nodes

• fn (double array): vector of the function values at the nodes (xn,yn)

• r (integer scalar): degree of the local polynomial interpolant

• q (integer scalar): number of additional points to select the m-tuple σ j

• mu (integer scalar): power parameter

• x (double array): vector of the x-coordinate of the evalutation points

• y (double array): vector of the y-coordinate of the evalutation points

OUTPUT:

• MO (double array): values of the multinode Shepard operator at the points (x,y)

• s (integer scalar): number of the m-tuples σ j

The function Multinode_Shepard1.m makes use of the following auxiliary functions and
MATLAB functions:

• powers: function which computes the powers of the bivariate monomial basis of total
degree d by using the routine mono_next_grlex.m

• length: computes the length of a vector

• sort: sorts in ascending order the elements of v, where v is the input vector and returns
also the sort index I which specifies how the elements of v were rearranged to obtain the
sorted output vector

• ismember: checks if a vector has the same entrances of the row of a matrix

• sum: computes the sum of the elements of a vector

• BivVand: function which computes the bivariate Vandermonde matrix

• lu: computes the LU factorization of a matrix and returns unit lower triangular matrix L,
upper triangular matrix U , and permutation matrix P
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• backslash: computes the solution of the linear system Ax = b, where A is a matrix and
b is the known term

• eps: spacing of floating point numbers

• prod: computes the product of the over each column of a matrix

2.2.2 Function Multinode_Shepard2.m

The function Multinode_Shepard2.m implements the Multinode Shepard method as described
by the pseudocode Algorithm 2. The output arguments are the same as the function Multinode_Shepard1.m
described in Section 2.2.1 with the addition of the use of the MATLAB function isempty.m
which allows to establish if a vector is empty. The input arguments are:

INPUT:

• xn (double array): vector of the x-coordinates of the nodes

• yn (double array): vector of the y-coordinates of the nodes

• fn (double array): vector of the function values at the nodes (xn,yn)

• r (integer scalar): degree of the local polynomial interpolant

• mu (integer scalar): power parameter

• x (double array): vector of the x-coordinate of the evaluation points

• y (double array): vector of the y-coordinate of the evaluation points

2.2.3 Demos

The demo demo_trial illustrates the numerical experiments provided in Section 2.4. The
demo demo_Stromboli illustrates the numerical experiments provided in Section 2.3 by se-
lecting, through a menu, the degree r of the local polynomial interpolant.

2.3 Numerical experiments
In this section we present some numerical experiments in order to show the efficiency of the
multinode Shepard method. All the tests have been performed on a laptop with a 11th Gen
Intel(R) Core(TM) i7-1165G7 2.80GHz 1.69 GHz processor and 16.00 GB RAM.

2.4 Reconstrution of smooth surfaces
For the first series of experiments, we make use of a set of 10000 Halton interpolation points
and we use them to approximate the Franke function

f1(x,y) = 0.75e−
(9x−2)2+(9y−2)2

4 +0.50e−
(9x−7)2+(9y−3)2

4

+0.75e−
(9x+1)2

49 − (9y+1)2
10 −0.20e−(9x−4)2−(9y−7)2

in the unit square [0,1]× [0,1]. We compute the pointwise error

ei = | f (xxx∗i )−M4[ f ](xxx∗i )|,
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Figure 1: Semilog plot of the maximum absolute errors (MAE), mean absolute errors (MEAE)
and root mean square absolute errors (RSME) by varying the degree r of the local polynomial
approximant from 1 to 8.

number of m-tuples CPU time (sec)
r Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 9890 5173 7 3
2 10000 3354 13 3
3 10000 2406 15 3
4 9999 1783 31 4
5 10000 1362 44 4
6 10000 1183 58 4
7 10000 947 74 4
8 10000 802 88 4

Table 1: Number of m-tuples and CPU time (in seconds) for the experiments in Figure 1.

at a regular grid of ne = 100× 100 points xxx∗i ∈ [0,1]× [0,1]. We compare Algorithm 1 and
Algorithm 2 by computing the maximum, mean and root mean square absolute errors

MAE = max
1≤i≤ne

ei; MEAE =
1
ne

ne

∑
i=1

ei; RMSE =

√
1
ne

ne

∑
i=1

e2
i (15)

and the CPU time (in seconds) for the computation of the approximate surface. In Figure 1
we display the semilog plot of the errors for the two algorithms by varying the degree of the
local polynomial interpolant from 1 to 8 and in Table 1 we report the associated number s of
m-tuples.

2.5 Reconstruction of surfaces from real-world data
For the second series of experiments, we make use of a set of real-world data related to the
Stromboli Volcano including the Sciara del Fuoco of 2002 lava flow [2] which is constituted
by 422710 DEM (Digital Elevation Model) data from which we extract the set of 97020 mock-
Halton data. More precisely, we consider the set of 100000 Halton data mapped into the rectan-
gle [0,2060]× [0,818] and we extract from the DEM data the ones that are closer to the Halton
data by discarding the duplicates. To test the effectiveness of the multinode Shepard method,
we extract from the mock-Halton dataset a subset Zne = {zzz1, . . . ,zzzne} of ne = 2000 data to use
as evaluation points.

In Table 2 we compare Algorithm 1 and Algorithm 2 by computing the maximum, mean
and root mean square absolute errors as in (15) and in Table 3 we compare the maximum, mean
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MAE MEAE RMSE
r Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 1.03e+1 7.90e+0 2.73e−1 2.90e−1 1.34e−2 1.38e−2
2 7.08e+0 2.52e+1 2.39e−1 2.97e−1 1.14e−2 2.02e−2
3 1.23e+1 1.15e+1 2.64e−1 3.61e−1 1.36e−2 1.96e−2
4 7.28e+0 2.21e+1 2.37e−1 3.42e−1 1.16e−2 2.00e−2
5 1.05e+1 1.62e+1 2.87e−1 4.19e−1 1.45e−2 2.23e−2
6 1.45e+1 2.49e+1 2.88e−1 3.97e−1 1.50e−2 2.27e−2

Table 2: Maximum, mean and root mean square absolute errors.

MAErel MEAErel RMSErel
r Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 2.28e−1 1.90e−1 1.68e−3 1.70e−3 1.74e−4 1.69e−4
2 1.24e−1 1.72e+0 1.45e−3 2.55e−3 1.38e−4 8.74e−4
3 7.60e−1 1.46e+0 2.04e−3 2.79e−3 4.55e−4 7.62e−4
4 3.29e−1 5.67e−1 1.51e−3 2.47e−3 2.11e−4 4.02e−4
5 1.94e−1 5.07e−1 1.78e−3 2.75e−3 2.03e−4 3.95e−4
6 3.07e−1 2.18e−1 1.71e−3 2.15e−3 2.16e−4 2.02e−4

Table 3: Maximum, mean and root mean square relative errors.

and root mean square relative errors

MAErel = max
1≤i≤ne

ei

f (xxxi)
; MEAErel =

1
ne

ne

∑
i=1

ei

f (xxxi)
; RMSErel =

√
1
ne

ne

∑
i=1

(
ei

f (xxxi)
,

)2

by varying the degree r from 1 to 6.
In Table 4 we report the number s of m-tuples by varying the degree r of the local polyno-

mial interpolant and the CPU time (in seconds) to reconstruct the surface in Figure 2 by using
412×164 grid points in the rectangle [0,2060]× [0,818] as evaluation points.

In Figure 2 we display the surface obtained by using the 95020 mock-Halton points and by
evaluating the multinode Shepard operator on 412×164 grid points in the rectangle [0,2060]×
[0,818].

The numerical results clearly show the convenience of the use of Algorithm 2 instead of
Algorithm 1 since it produces approximations of the same accuracies of Algorithm 1 with

number of m-tuples CPU time (sec)
r Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 94065 56592 808 262
2 95020 34826 1350 236
3 95018 25733 1644 241
4 95019 20200 2313 265
5 95019 16248 2891 271
6 95018 13339 3679 281

Table 4: Number of m-tuples varying the degree r of the local polynomial interpolant and CPU
time in seconds to reconstruct the surface in Figure 2 by using, as evaluation points, 412×164
grid points in the rectangle [0,2060]× [0,818].
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significantly reduced computation cost and CPU time. More precisely, Table 4 shows that Al-
gorithm 2 reduces the number s of subsets σ j as the degree r increases of a factor approximately
equal to n

r+1 , where n is the number of interpolation nodes.

3 Conclusions
We encourage scientists involved in image reconstruction to explore our MATLAB package
Multinode_Shepard for enhanced accuracy and efficiency in scattered data interpolation. This
package implements the multinode Shepard method, a significant advancement over the clas-
sical Shepard’s method, providing robust solutions for interpolating complex datasets, with
reduced computational cost and improved accuracy.

The multinode Shepard method, as demonstrated in our numerical experiments, signifi-
cantly improves interpolation accuracy by utilizing local polynomial interpolants and inverse
distance weighting functions. This method has been rigorously tested on real-world data, such
as the Stromboli Volcano dataset, showing remarkable efficiency and precision.

By using our MATLAB package, you can benefit from:

• high accuracy in data interpolation, even with irregularly distributed datasets;

• efficient computation through optimized algorithms, reducing processing time and com-
putational costs;

• robust performance validated through extensive numerical experiments.

The Multinode_Shepard package is freely available, and we invite you to access the
source code and demonstrations via our GitHub repository: Multinode_Shepard GitHub [12].
This tool is designed to assist in your research, enabling more precise and reliable image re-
constructions.

We welcome feedback and suggestions from the research community and are open to col-
laborations that can further enhance the capabilities and applications of the multinode Shepard
method. Please feel free to reach out to us for any inquiries or potential joint projects.
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Figure 2: The Google Heart image of the Stromboli Volcano with the evidence of the zone from
which the DEM data come from (top) and the reconstructed surface of the Stromboli Volcano
(bottom) evaluated at a regular grid of 412×164 points in the rectangle [0,2060]× [0,818].
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