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Abstract

In this manuscript, we propose an efficient, practical and easy-to-implement way to ap-
proximate actions of ϕ-functions for matrices with d-dimensional Kronecker sum structure
in the context of exponential integrators up to second order. The method is based on a di-
rection splitting of the involved matrix functions, which lets us exploit the highly efficient
level 3 BLAS for the actual computation of the required actions in a µ-mode fashion. The
approach has been successfully tested on two- and three-dimensional problems with var-
ious exponential integrators, resulting in a consistent speedup with respect to a technique
designed to approximate actions of ϕ-functions for Kronecker sums.

Keywords: exponential integrators, µ-mode, ϕ-functions, direction splitting, Kronecker form
(MSC2020: 65F60, 65L04, 65M20)

1 Introduction
The problem of computing actions of exponential and exponential-like functions with Kro-
necker sum structure received a lot of attention in the last years [6, 8, 10, 14, 21, 22, 25].
Indeed, the efficient approximation of such quantities allows to effectively employ exponential
integrators for the time integration of large stiff systems of Ordinary Differential Equations
(ODEs). More in detail, we suppose to work with the following system of ODEs{

uuu′(t) = Kuuu(t)+ggg(t,uuu(t)), t > 0,
uuu(0) = uuu0.

(1a)
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Direction splitting of ϕ-functions in exponential integrators

The stiff part is represented by the matrix K ∈ CN×N which has d-dimensional Kronecker sum
structure, i.e.,

K = Ad ⊕Ad−1 ⊕·· ·⊕A1 =
d

∑
µ=1

A⊗µ , A⊗µ = Id ⊗·· ·⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗·· ·⊗ I1. (1b)

Here, Aµ ∈ Cnµ×nµ and Iµ is the identity matrix of size nµ . Moreover, ggg(t,uuu(t)) is a generic
nonlinear function of t and of the unknown uuu(t)∈CN , with N = n1 · · ·nd . Throughout the paper
the symbol ⊗ denotes the standard Kronecker product of matrices, while ⊕ is employed for the
Kronecker sum of matrices. Finally, we refer to system (1) as a system in Kronecker form or
with Kronecker sum structure.

This kind of systems naturally arises in many contexts. For example, if d = 2, such a
structure appears in constant coefficient matrix Riccati differential equations (see, for instance,
Reference [1, Ch. 3]) {

UUU ′(t) = A1UUU(t)+UUU(t)AT
2 +C+UUU(t)BUUU(t),

UUU(0) =UUU0,
(2)

where UUU(t) ∈ Cn1×n2 , B ∈ Cn2×n1 , and C ∈ Cn1×n2 . Indeed, using the properties of the Kro-
necker product [31], we can rewrite equivalently such a matrix equation as a system of ODEs
in Kronecker form (1), i.e.,{

uuu′(t) = ((I2 ⊗A1)+(A2 ⊗ I1))uuu(t)+vec(C+UUU(t)BUUU(t)),
uuu(0) = vec(UUU0),

(3)

where vec is the operator which stacks the columns of the input matrix in a single vector.
Systems with Kronecker sum structure often arise also when applying the method of lines

to approximate numerically the solution of a Partial Differential Equation (PDE) defined on
a tensor product domain and appropriate boundary conditions. Indeed, after semidiscretiza-
tion in space of well-known parabolic equations such as Allen–Cahn, Brusselator, Gray–Scott,
advection–diffusion–reaction [8, 10] or Schrödinger equations [6], we obtain a large stiff sys-
tem of ODEs in form (1).

Once system (1) is given, many techniques can be employed to numerically integrate it in
time, and in particular we are interested in the application of exponential integrators [19]. In
fact, they are a prominent way to perform the required task since they enjoy favorable stability
properties that make them suitable to work in the stiff regime. These kinds of schemes require
the computation of the action of the matrix exponential and of exponential-like matrix functions
(the so-called ϕ-functions) on vectors. They are defined, for a generic matrix X ∈ CN×N , as

ϕ0(X) = eX , ϕℓ(X) =
∫ 1

0

θ ℓ−1

(ℓ−1)!
e(1−θ)X dθ , ℓ > 0, (4a)

and their Taylor series expansion is given by

ϕℓ(X) =
∞

∑
i=0

X i

(i+ ℓ)!
, ℓ≥ 0. (4b)

When the size of X allows, it is common in practice to approximate such matrix functions by
means of diagonal Padé approximations [2, 5, 30] or via polynomial approximations [12, 20,
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29]. On the other hand, when X is large sized, this approach is computationally unfeasible, and
many algorithms have been developed to perform directly the action of ϕ-functions on vectors.
We mention, among the others, Krylov-based techniques [16, 23, 26], direct polynomial meth-
ods [3, 7, 11, 20], and hybrid techniques [9]. When X is in fact a matrix K with Kronecker sum
structure (1b), it is possible to exploit this information to compute more efficiently the action
of the ϕ-functions on a vector. Indeed, let us consider ℓ = 0, so that ϕ0(K) = eK . Then, it is
easy to see [10] that computing

eee = eKvvv = eAd⊕Ad−1⊕···⊕A1vvv =
(

eAd ⊗ eAd−1 ⊗·· ·⊗ eA1
)

vvv (5)

is mathematically equivalent to the tensor formulation

EEE =VVV ×1 eA1 ×2 · · ·×d eAd . (6)

Here, EEE and VVV are order-d tensors of size n1 ×·· ·×nd that satisfy vec(EEE) = eee and vec(VVV ) = vvv,
respectively, while vec is the operator which stacks the columns of the input tensor into a
suitable single column vector. The symbol ×µ denotes the tensor–matrix product along the
mode µ , which is also known as µ-mode product, and the computation of consecutive µ-mode
products (as it happens in formula (6)) is usually referred to as Tucker operator. Notice that the
element ei1...id of the tensor EEE turns out to be

ei1...id =
nd

∑
jd=1

· · ·
n1

∑
j1=1

v j1... jd

d

∏
µ=1

eµ

iµ jµ , 1 ≤ iµ ≤ nµ , (7)

being eµ

iµ jµ the generic element of eAµ . Although formulas (5), (6), and (7) are mathematically
equivalent, the direct usage of both formulas (5) and (7) is much less efficient than formula (6),
which is implemented by exploiting the highly performance level 3 BLAS after computing the
small sized matrix exponentials eAµ . Indeed, for instance, formula (6) in two dimensions re-
quires two matrix-matrix products, as it reduces to eA1VVV

(
eA2
)T, while in the d-dimensional

case it requires d level 3 BLAS calls. This technique led to the so-called µ-mode integrator [6],
and has been successfully used to integrate in time semidiscretizations of advection–diffusion–
reaction and Schrödinger equations, eventually in combination with a splitting scheme. In
particular, it is reported a consistent speedup with respect to state-of-the-art techniques to com-
pute the action of the matrix exponential on a vector, as well as a very good scaling when
performing GPUs simulations. We invite a reader interested in more details and applications of
the Tucker operator to check References [6, 10].

When computing actions of ϕ-function of higher order, i.e., ϕℓ(K)vvv with ℓ > 0, the last
equality in formula (5) does not hold anymore. In Reference [8] the authors propose an ap-
proach to overcome this difficulty, by developing a method based on the application of a quadra-
ture formula to the integral definition of the ϕ-functions (4a). In fact, it requires an action of
the matrix exponential for each quadrature point, which is performed by a Tucker operator. In
this way, it is possible to compute the required action of ϕ-functions at a given tolerance. The
technique, which has been named PHIKS, has been developed for arbitrary dimension d and is
designed to compute not only ϕ-functions applied to a vector but also linear combinations of
actions of ϕ-functions. In addition the desired quantities can be made available simultaneously
at suitable different time scales. These features allow to implement high stiff order exponen-
tial integrators, such as exponential Runge–Kutta schemes, in a more efficient way compared
to the usage of state-of-the-art techniques to compute combinations of actions of ϕ-functions.
Another very recent method based on quadrature rules applied to formula (4a) is presented

M. Caliari, F. Cassini 3
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in Reference [14], where the technique is described only in dimension d ≤ 3 for actions of
single ϕ-functions at a given time scale. Other approaches for the action of ϕ-functions for
matrices with Kronecker sum structure are available in the literature. We mention for instance
Reference [25], whose algorithm is based on the solution of Sylvester equations and is cur-
rently limited to dimension d = 2. Another way to approximate the action of ϕ-functions of
the Sylvester operator A1VVV +VVV AT

2 or the Lyapunov operator AVVV +VVV AT for the solution of Ric-
cati differential equations, possibly in the context of low-rank approximation, is presented in
References [21, 22].

In this manuscript we propose an alternative way to approximate ϕℓ(K)vvv, with ℓ > 0 and K
a matrix with d-dimensional Kronecker sum structure, in the context of exponential integrators
up to second order. The approach, that we call PHISPLIT, is based on a direction splitting of the
matrix ϕ-functions of K, which generates an approximation error compatible with the one of
the time marching numerical scheme. The evaluation of the required actions is performed in a
µ-mode fashion by means of a single Tucker operator for each ϕ-function, exploiting the highly
efficient level 3 BLAS. After recalling some popular exponential integrators in Section 2, we
describe in Section 3 the proposed technique, as well as how to employ it to implement the just
mentioned exponential schemes. Then, in Section 4 we present some numerical experiments
that show the effectiveness of PHISPLIT, and we finally draw some conclusions in Section 5.

2 Recall of some exponential integrators up to order two
When numerically integrating stiff semilinear ODEs in form (1), a prominent approach is to
use exponential integrators [19]. For convenience of the reader, we report here (for simplicity
in a constant time step size scenario) a possible derivation of the exponential schemes that will
be employed later in the numerical experiments of Section 4.

The starting point is the variation-of-constants formula

uuu(tn+1) = eτKuuu(tn)+
∫ tn+1

tn
e(tn+1−s)Kggg(s,uuu(s))ds

= eτKuuu(tn)+ τ

∫ 1

0
e(1−θ)τKggg(tn + τθ ,uuu(tn + τθ))dθ

(8)

which expresses the analytical solution of system (1a) at time tn+1 = tn+τ , where τ is the time
step size. If we approximate the integral with the rectangle left rule, we get the scheme

uuun+1 = eτKuuun + τeτKggg(tn,uuun) = eτK(uuun + τggg(tn,uuun)), (9)

which is known as Lawson–Euler scheme (see Reference [4, Sec. A.1.1]). It is of order one,
exact if ggg(t,uuu(t)) is null. The linear part of system (1a) is solved exactly and thus no restriction
on the time step size due to the stiffness is necessary. Instead, if the trapezoidal quadrature rule
is applied to the integral in equation (8), we get the approximation

uuu(tn+1)≈ eτKuuu(tn)+
τ

2
(
eτKggg(tn,uuu(tn))+ggg(tn+1,uuu(tn+1))

)
.

An explicit time marching scheme is then obtained by creating an intermediate stage uuun2 which
approximates uuu(tn+1) in the right hand side by the Lawson–Euler scheme (9). Overall, we get

uuun2 = eτK(uuun + τggg(tn,uuun)),

uuun+1 = eτK
(

uuun +
τ

2
ggg(tn,uuun)

)
+

τ

2
ggg(tn+1,uuun2),

(10)

M. Caliari, F. Cassini 4



Direction splitting of ϕ-functions in exponential integrators

which is a Lawson method of order two, also known in literature as Lawson2b (see Refer-
ence [4, Sec. A.1.6]).

A different approach to the approximation of the integral in formula (8) leads to the so-
called exponential Runge–Kutta methods. Indeed, if we approximate only the nonlinear func-
tion ggg(tn+τθ ,uuu(tn+τθ)) by ggg(tn,uuu(tn)), by using the definition of ϕ1 function in equation (4a)
we get the scheme

uuun+1 = eτKuuun + τϕ1(τK)ggg(tn,uuun),

which can be equivalently rewritten as

uuun+1 = uuun + τϕ1(τK)(Kuuun +ggg(tn,uuun)) (11)

and is known as exponential Euler (or Nørsett–Euler, see Reference [4, Sec. A.2.1]). It is a
first order scheme, exact if ggg(t,uuu(t)) is constant. Another possibility is to interpolate ggg(tn +
τθ ,uuu(tn +τθ)) with a polynomial of degree one in θ at 0 and 1, thus obtaining the approxima-
tion

uuu(tn+1)≈ eτKuuu(tn)+ τ

∫ 1

0
e(1−θ)τK(θggg(tn+1,uuu(tn+1))+(1−θ)ggg(tn,uuu(tn)))dθ .

By taking a stage uuun2 which approximates uuu(tn+1) in the right hand side by the exponential
Euler scheme, and using the definitions of ϕ1 and ϕ2 functions in formula (4a), we obtain
the second order exponential Runge–Kutta scheme (also known in literature as ETD2RK, see
Reference [4, Sec. A.2.5])

uuun2 = uuun + τϕ1(τK)(Kuuun +ggg(tn,uuun)),

uuun+1 = uuun2 + τϕ2(τK)(ggg(tn+1,uuun2)−ggg(tn,uuun)).
(12)

Finally, we consider the Rosenbrock–Euler method (see Reference [19, Ex. 2.20]) which,
in the autonomous case, can be obtained from the application of the exponential Euler scheme
to the linearized differential equation

uuu′(t) =
(

K +
∂ggg
∂uuu

(uuun)︸ ︷︷ ︸
Kn

)
uuu(t)+

(
ggg(uuu(t))− ∂ggg

∂uuu
(uuun)uuu(t)

)
,

where Kn is the Jacobian evaluated at uuun. The resulting scheme is

uuun+1 = uuun + τϕ1(τKn)(Kuuun +ggg(uuun)). (13)

It is a second order method and, in contrast to all the methods presented above, it requires
the evaluation of a different matrix function ϕ1(τKn) at each time step. The extension to non-
autonomous systems is straightforward, see Reference [19, Ex. 2.21].

Remark 2.1. We considered here only a selected number of exponential integrators which re-
quire the action of ϕ-functions. Other exponential-type schemes of first or second order could
benefit from the µ-mode splitting technique for computing ϕ-functions of Kronecker sums that
we present in this work. We mention, among the others, exponential multistep schemes [13],
corrected splitting schemes [15], low-regularity schemes [28], and Magnus integrators for lin-
ear time dependent coefficient non-homogeneous equations [17].

M. Caliari, F. Cassini 5
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3 Direction splitting of ϕ-functions
As mentioned in the introduction, we suppose that we are dealing with a matrix K with Kro-
necker sum structure (1b), and we are interested in approximating efficiently ϕℓ(τK)vvv, vvv ∈CN ,
τ ∈ R, in the context of exponential integrators. In particular, we know that by employing a
scheme of order p, we make a local error O(τ p+1), being τ the (constant) time step size. Hence,
if the integrator requires to compute a quantity of the form τqϕℓ(τK), with q > 0, it is sufficient
to approximate ϕℓ(τK) with an error O(τ p+1−q) to preserve the order of convergence. For
our schemes of interest, i.e., the ones presented in the previous section, we make use of the
following result.

Theorem 3.1. Let K be a matrix with d-dimensional Kronecker sum structure (1b). Then, for
ℓ > 0, we have

ϕℓ(τK) = (ℓ!)d−1 (ϕℓ(τAd)⊗ϕℓ(τAd−1)⊗·· ·⊗ϕℓ(τA1))+O(τ2). (14)

Proof. For compactness of presentation, we employ the following notation

Xd ⊗Xd−1 ⊗·· ·⊗X1 =
1⊗

µ=d

Xµ , Xµ ∈ Cnµ×nµ .

Then, by using the Taylor expansion of the ϕℓ function (4b) and the properties of the Kronecker
product (see Reference [31] for a comprehensive review) we obtain

(ℓ!)d−1
1⊗

µ=d

ϕℓ(τAµ) = (ℓ!)d−1
1⊗

µ=d

(
Iµ

ℓ!
+

τAµ

(ℓ+1)!
+O(τ2)

)

= (ℓ!)d−1

 1
(ℓ!)d

1⊗
µ=d

Iµ +
τ

(ℓ!)d−1(ℓ+1)!

d

∑
µ=1

A⊗µ +O(τ2)


=

I
ℓ!
+

τK
(ℓ+1)!

+O(τ2)

= ϕℓ(τK)+O(τ2),

where I is the identity matrix of size N ×N.

Formula (14) allows for an efficient µ-mode based implementation, similarly to the matrix
exponential case (6). Indeed, given an order-d tensor VVV , if we define the tensor formulation

PPP(2)
ℓ (VVV ) =

(
(ℓ!)d−1VVV

)
×1 ϕℓ(τA1)×2 ϕℓ(τA2)×3 · · ·×d ϕℓ(τAd), (15)

we have
ϕℓ(τK)vvv = ppp(2)ℓ (vvv)+O(τ2),

where vvv = vec(VVV ) and ppp(2)ℓ (vvv) = vec(PPP(2)
ℓ (VVV )).

This is precisely the formulation that we propose to employ in the above exponential in-
tegrators when actions of ϕ-functions of a matrix with Kronecker sum structure are required.
From now on, we refer to this technique as the PHISPLIT approach. Notice that, after the
computation of the small sized matrix functions ϕℓ(τAµ), with µ = 1, . . . ,d, a single Tucker
operator is required to evaluate the approximation.

M. Caliari, F. Cassini 6
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3.1 Evaluation of small sized matrix ϕ-functions
The matrices Aµ have a much smaller size compared to K, and the corresponding matrix ϕ-
functions can be directly computed without much effort. In particular, for ϕ0 (i.e., the expo-
nential function), we employ the most popular technique for generic matrices, which is based
on a diagonal rational Padé approximation coupled with a scaling and squaring algorithm (see
Reference [2]). This procedure is encoded in the internal MATLAB function expm. Different al-
gorithms that could be used as well, based on Taylor approximations of the matrix exponential,
can be found in References [12, 29].

For the computation of higher order matrix ϕ-functions we rely on a quadrature formula
applied to the integral definition (4a). For a generic matrix X ∈ CN×N , we have then

ϕℓ(X)≈
q

∑
i=1

wie(1−θi)X θ
ℓ−1
i

(ℓ−1)!
, ℓ > 0. (16)

In order to avoid an impractically large number of quadrature points, we couple the procedure
with a modified scaling and squaring algorithm (see Reference [30]). In fact, we scale the orig-
inal matrix X by 2s, where s is a natural number defined so that ∥X/2s∥1 < 1, we approximate
ϕℓ(X/2s) by means of formula (16) and we recover ϕℓ(X) by the recurrence

ϕℓ(2z) =
1
2ℓ

[
ez

ϕℓ(z)+
ℓ

∑
k=1

ϕk(z)
(ℓ− k)!

]
. (17)

In order to compute the needed matrix exponentials, we again employ the internal MATLAB

function expm. Notice that the squaring of ϕℓ also requires the evaluation of all the ϕ j functions,
for 0 < j < ℓ. In particular, for the first squaring step, we compute themselves by formula (16)
with ℓ = j and using the same set of matrix exponentials already available for the quadrature
procedure of ϕℓ(X/2s). For all the subsequent squaring steps, we use formula (17) itself with
ℓ = j. As a consequence of this procedure, the computation of a single matrix function ϕℓ

makes available all the matrix functions ϕ j, with 0 ≤ j ≤ ℓ. In practice, for the quadrature we
employ the Gauss–Legendre–Lobatto formula, which allows for high precision with a moderate
number of quadrature nodes. Moreover, since it uses the endpoints of the quadrature interval,
we make use of the matrix exponential eX/2s

(θ1 = 0), which is also required for the subsequent
squaring procedure, and we avoid generating the last matrix exponential since θq = 1. The
overall procedure is implemented in MATLAB language in our function phiquad.

Alternatively, for the computation of the matrix ϕ-functions, it is possible to employ the
MATLAB routine phipade (see Reference [5]), whose algorithm is based on a rational Padé
approximation coupled with the squaring formula (17). Another recent technique that employs
a polynomial Taylor approximation instead of rational Padé one is presented in Reference [20].

3.2 Practical implementation of the exponential integrators
The implementation of the Lawson methods introduced in Section 2, which require just actions
of matrix exponentials, does not suffer from any direction splitting error, thanks to the equiv-
alence between formulas (5) and (6). In particular, the tensor formulation of Lawson–Euler
is

UUUn+1 = (UUUn + τGGG(tn,UUUn))×1 eτA1 ×2 · · ·×d eτAd , (18)

M. Caliari, F. Cassini 7
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while the Lawson2b scheme is given by

UUUn2 = (UUUn + τGGG(tn,UUUn))×1 eτA1 ×2 · · ·×d eτAd ,

UUUn+1 =
(

UUUn +
τ

2
GGG(tn,UUUn)

)
×1 eτA1 ×2 · · ·×d eτAd +

τ

2
GGG(tn+1,UUUn2).

(19)

The remaining exponential integrators transform as follows. First of all, the action of the matrix
K on uuun is computed in tensor form as

d

∑
µ=1

(
UUUn ×µ Aµ

)
(20)

without explicitly assembling the matrix K (see Reference [9]). The exponential Euler PHIS-
PLIT method is

UUUn+1 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(tn,UUUn)

)
×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd). (21)

Notice that an alternative version, which we will not consider in this work but could be more
appropriate for the cases in which the contribute of GGG(tn,UUUn) is particularly small, is

UUUn+1 =UUUn ×1 eτA1 ×2 · · ·×d eτAd + τGGG(tn,UUUn)×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd), (22)

that is in fact an exact formula if GGG(t,UUU(t)) is null. The ETD2RK PHISPLIT scheme becomes

UUUn2 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(tn,UUUn)

)
×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd),

UUUn+1 =UUUn2 + τ

(
2d−1 (GGG(tn+1,UUUn2)−GGG(tn,UUUn))

)
×1 ϕ2(τA1)×2 · · ·×d ϕ2(τAd).

(23)

Finally, concerning the exponential Rosenbrock–Euler method for autonomous systems, we
assume that the Jacobian Kn can be written as a Kronecker sum, i.e.,

Kn = K +
∂ggg
∂uuu

(uuun) = Jd(UUUn)⊕ Jd−1(UUUn)⊕·· ·⊕ J1(UUUn).

Therefore the exponential Rosenbrock–Euler PHISPLIT method is

UUUn+1 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(UUUn)

)
×1 ϕ1(τJ1(UUUn))×2 · · ·×d ϕ1(τJd(UUUn)). (24)

4 Numerical experiments
In this section we present numerical experiments to validate the proposed approach PHISPLIT.
In particular, we will consider a two-dimensional example from linear quadratic control and a
three-dimensional example which models an advection–diffusion–reaction equation. To per-
form the time marching, we will employ the exponential integrators of Section 2 as described
in Section 3.2 for the PHISPLIT version.

As term of comparison, we will consider the approximation of actions of ϕ-functions for
matrices with Kronecker sum structure using PHIKS1 [8]. This algorithm operates in tensor

1https://github.com/caliarim/phiks
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formulation using µ-mode products, too, but it requires an input tolerance, which we take
proportional to the local temporal order of the method and to the norm of the current solution.
The proportionality constant is chosen so that the accuracy of the routine does not affect the
integration error.

To compute all the relevant tensor operations, i.e., Tucker operators and µ-mode products,
we use the functions contained in the package KronPACK2. Moreover, to compute the needed
matrix ϕ-functions, we employ the internal MATLAB function expm (for ϕ0) and the function
phiquad (for ϕℓ, ℓ > 0), as presented in Section 3.1. In terms of hardware, we run all the
experiments employing an Intel® Core™ i7-10750H CPU with six physical cores and 16GB of
RAM. As a software, we use MathWorks MATLAB® R2022a.

4.1 Example of code usage
All the codes to reproduce the following numerical experiments, together with our implementa-
tion of PHISPLIT and the function phiquad, can be found in a maintained GitHub repository3.
They are written in MATLAB language and they are fully compatible with GNU Octave. As an
example, we show in Code 1 how to perform a full integration of problem (1) by the ETD2RK
PHISPLIT method (23) with constant time step size.

Code 1: Implementation of ETD2RK PHISPLIT
1 % compute once and for all phi1 and phi2 functions and store them
2 for mu = 1:d
3 [phi_store.phi{1:2,mu}] = phiquad(tau * A{mu},2);
4 end
5
6 % time integration
7 U = U0;
8 t = 0;
9 for i = 1:m
10 Gn = G(t,U);
11 P1 = phisplit(tau,A,kronsumv(U,A) + Gn,1,phi_store); % phi1 approximation
12 Un2 = U + tau * P1; % intermediate stage
13 P2 = phisplit(tau,A,G(t + tau,U2) − Gn,2,phi_store); % phi2 approximation
14 U = Un2 + tau * P2; % updated solution
15 t = t + tau;
16 end

Here, we simply notice that the required ϕ-functions are computed once and for all before time
integration by the function phiquad, the function phisplit computes approximation (15),
while the function kronsumv of the KronPACK package realizes formula (20).

4.2 Linear quadratic control
We present in this section a classical example from linear quadratic control (see, for instance,
References [24, 27]). We are interested in the minimization over the scalar control v(t) ∈ R of
the functional

J (v) =
1
2

∫ T

0

(
αs(t)2 + v(t)2)dt

subject to the constraints

w′(t) = Aw(t)+bv(t), w(0) = w0,

s(t) = cw(t).

2https://github.com/caliarim/KronPACK
3https://github.com/caliarim/phisplit
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Here w(t) ∈ Rn×1 is a column vector containing the state variables, s(t) ∈ R represents the
scalar output, A ∈ Rn×n is the system matrix, b ∈ Rn×1 is the system column vector, c ∈ R1×n

is a row vector, and α ∈ R+ is a positive scalar.
Then, the solution of the constrained optimization problem is determined by the optimal

control
v∗(t) =−bTUUU(t)w(t),

where UUU(t) ∈ Rn×n satisfies the symmetric Riccati differential equation{
UUU ′(t) = ATUUU(t)+UUU(t)A+C+UUU(t)BUUU(t),
UUU(0) = ZZZ,

(25)

where C = αcTc and B =−bbT (see Reference [1, Ch. 4] for a comprehensive introduction to
the subject). Here ZZZ ∈Rn×n is a matrix containing all zeros entries. Clearly, equation (25) is in
form (2), which in turn can be seen as a problem with two-dimensional Kronecker sum struc-
ture (3) and integrated efficiently by means of the techniques described in Section 3. Notice
also that the solution of equation (25) converges to a steady state determined by the algebraic
Riccati equation

ATUUU(t)+UUU(t)A+C+UUU(t)BUUU(t) = 0. (26)

For our numerical experiment, similarly to what previously done in the literature [21, 22,
24, 27], we take A ∈ Rn̂2×n̂2

as the matrix obtained by the discretization with second order
centered finite differences of the operator

∂xx +∂yy −10x∂x −100y∂y (27)

on the domain [0,1]2 with homogeneous Dirichlet boundary conditions. Moreover, the compo-
nents bk of the vector b are defined as

bk =

{
1 if 0.1 < xi ≤ 0.3,
0 otherwise,

k = i+( j−1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂,

while for the components ck of the vector c we take

ck =

{
1 if 0.7 < xi ≤ 0.9,
0 otherwise,

k = i+( j−1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂.

Here xi represents the ith (inner) grid point along the x direction. Finally, we set α = 100.
For the temporal integration of equation (25) we use the exponential Rosenbrock–Euler

method, already employed in References [21, 22], and reported in formula (13) (see for-
mula (24) for the PHISPLIT version). In fact, the Jacobian matrix of system (25) has the follow-
ing Kronecker sum structure

Kn = I ⊗ (AT+UUUnB)+(A+BUUUn)
T⊗ I,

where I is the identity matrix of size n × n, with n = n̂2. We remark that the exponential
Rosenbrock–Euler PHISPLIT method requires at each time step to evaluate the matrix func-
tion ϕ1(τ(AT+UUUnB)), to compute the action Kuuun and to perform one Tucker operator. We
will employ also the second order exponential Runge–Kutta method ETD2RK, reported in for-
mula (12) and presented in PHISPLIT sense in formula (23). Although each time step of this

M. Caliari, F. Cassini 10
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Figure 1: Convergence of the exponential Rosenbrock–Euler and of the ETD2RK methods,
both in PHIKS and in PHISPLIT variants, to the steady state of Riccati differential equation (25).
Here n̂ = 20, the integrators have been employed with 200 time steps, and the relative errors,
measured in the Frobenius norm with respect to the solution of algebraic Riccati equation (26),
are displayed each 10th time step.

integrator requires two Tucker operators plus the action Kuuun for the PHISPLIT version, in a
constant time step size implementation the needed matrix functions ϕ1(τAT) and ϕ2(τAT) can
be computed once and for all at the beginning.

First of all, we verify the implementation of the involved exponential integrators for a long
term simulation, i.e., until reaching the steady state. For this experiment, we employ n̂ = 20
inner discretization points for the x and the y variables. As confirmed by the plot in Figure 1,
around time 0.15 the methods, both in their PHIKS and PHISPLIT implementation, approach the
solution of equation (26), which is obtained with the MATLAB function icare from the Control
System Toolbox.

exp Rosenbrock–Euler PHIKS
steps 10 20 30 40 50
order – 2.11 2.06 2.05 2.03

ETD2RK PHIKS
steps 7 14 21 28 35
order – 2.08 2.05 2.03 2.03

exp Rosenbrock–Euler PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

ETD2RK PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

Table 1: Number of time steps and observed convergence rates for the time integration of Ric-
cati differential equation (25) up to final time T = 0.025, with different exponential integrators
and n̂ = 30. The achieved errors and the wall-clock times are displayed in Figure 2.

Then, we compare the performances of the integrators for the solution of equation (25)
with n̂ = 30 and final time T = 0.025. All methods are run with different time step sizes

M. Caliari, F. Cassini 11
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Figure 2: Achieved errors in the Frobenius norm and wall-clock times in seconds for the solu-
tion of Riccati differential equation (25) up to final time T = 0.025, with different integrators
and n̂ = 30. The number of time steps for each exponential method is reported in Table 1. The
input tolerances (both absolute and relative) for ode23 are 5e−3, 1e−3, 1e−4, 5.5e−5, and
5e−5.

in such a way to reach comparable relative errors with respect to a reference solution. The
number of time steps for each method and simulation, together with the numerically observed
convergence rate, is reported in Table 1. All the methods appear to be of second order, as
expected. In Figure 2 we report the relative errors and the corresponding wall-clock times of
the simulations. Here, we also include the performance of the built-in MATLAB function ode23.
This is an explicit Runge–Kutta method of order three with variable step size, suggested for not
stringent tolerances and for moderately stiff problems. In fact, it turned out to be the fastest
routine in the ODE suite to reach accuracies in the same range of the other methods. We notice
first of all that the exponential Rosenbrock–Euler method is always faster than ETD2RK in
the PHIKS implementation, that is with the action of matrix functions computed at a precision
that does not affect the temporal error (see the discussion at the beginning of the section). On
the other hand, the two implementations with PHISPLIT are always faster compared with their
PHIKS counterparts, although they require a larger number of time steps to reach a comparable
accuracy. Moreover, the ETD2RK method turns out to be faster with respect to the exponential
Rosenbrock–Euler method. This is mainly due to the fact that the matrix functions in the
Runge–Kutta case are computed only once before the time marching. This method is in fact
at least twice as fast as the other exponential methods and faster than ode23, which anyway
shows a good performance for the most stringent tolerances.

Finally, we repeat the same experiment with n̂ = 40. The results are presented in Table 2
and in Figure 3. The global behavior is similar with respect to the previous case, although
the speed-ups of the PHISPLIT implementations with respect to their PHIKS counterparts is
noticeably larger. In fact, ETD2RK PHISPLIT is still the most efficient method.

Remark 4.1. The discretization of the operator (27) has itself a Kronecker sum structure. Hence,

M. Caliari, F. Cassini 12
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exp Rosenbrock–Euler PHIKS
steps 15 30 45 60 75
order – 2.10 2.06 2.04 2.03

ETD2RK PHIKS
steps 10 20 30 40 50
order – 2.12 2.07 2.05 2.04

exp Rosenbrock–Euler PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

ETD2RK PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

Table 2: Number of time steps and observed convergence rates for the time integration of Ric-
cati differential equation (25) up to final time T = 0.025, with different exponential integrators
and n̂ = 40. The achieved errors and the wall-clock times are displayed in Figure 3.
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Figure 3: Achieved errors in the Frobenius norm and wall-clock times in seconds for the solu-
tion of Riccati differential equation (25) up to final time T = 0.025, with different integrators
and n̂ = 40. The number of time steps for each exponential method is reported in Table 2. The
input tolerances (both absolute and relative) for ode23 are 3e−3, 4e−4, 2.3e−4, 9.5e−5, and
8.7e−5.

it is possible to write equation (25) (in vector formulation for simplicity of exposition) as{
uuu′(t) = Kuuu(t)+ggg(uuu(t)),
uuu(0) = zzz,

where ggg and zzz are the vectorizations of the nonlinearity and of ZZZ, respectively, and K has the
form

K = I ⊗ I ⊗ I ⊗DT
1 +DT

2 ⊗ I ⊗ I ⊗ I.

Here I is an identity matrix of size n̂× n̂ and D1 ∈ Rn̂×n̂ and D2 ∈ Rn̂×n̂ the discretizations of
the operators ∂xx −10x∂x and ∂yy −100y∂y, respectively. In the context of temporal integration
with exponential Runge–Kutta schemes, we could then use both the PHIKS and the PHISPLIT

M. Caliari, F. Cassini 13
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approaches with the even smaller sized matrices D1 and D2, forming then the approximations at
every time steps using Tucker operators with order-4 tensors. However, as this is just possible
because of the specific form of the operator (27), we do not pursue this approach here.

4.3 Advection–diffusion–reaction
We now consider the semidiscretization in space of the following three-dimensional evolution-
ary Advection–Diffusion–Reaction (ADR) equation (see Reference [8])

∂tu(t,x1,x2,x3) = ε∆u(t,x1,x2,x3)+α(∂x1 +∂x2 +∂x3)u(t,x1,x2,x3)

+g(t,x1,x2,x3,u(t,x1,x2,x3)),

u0(x1,x2,x3) = 64x1(1− x1)x2(1− x2)x3(1− x3).

(28)

The nonlinear function g is given by

g(t,x1,x2,x3,u(t,x1,x2,x3)) =
1

1+u(t,x1,x2,x3)2 +Ψ(t,x1,x2,x3),

where Ψ(t,x1,x2,x3) is such that the analytical solution of the equation is

u(t,x1,x2,x3) = etu0(x1,x2,x3).

The problem is solved up to final time T = 1 in the domain [0,1]3 and completed with ho-
mogeneous Dirichlet boundary conditions. The remaining parameters are set to ε = 0.75 and
α = 0.1. By semidiscretizing in space with second order centered finite differences, we ob-
tain a system of type (1) with K having three-dimensional Kronecker sum structure, where
Aµ approximates ε∂xµ xµ

+α∂xµ
. We first perform simulations with n1 = 40, n2 = 41, and

n3 = 42 inner discretization points for the x1, x2 and x3 variables, respectively. The temporal
integration is performed with four methods: the Lawson–Euler scheme (9), the exponential
Euler method (11), the Lawson2b scheme (10) and the ETD2RK method (12) (see Section 3.2
for their practical implementation and the PHISPLIT versions). In particular, concerning the
Lawson schemes, the needed matrix exponentials exp(τAµ), with µ = 1,2,3, are computed
once and for all at the beginning. Then, one and two Tucker operators per time step, for the
first order and second order scheme, respectively, are required to form the approximations dur-
ing the temporal integration. Concerning the PHISPLIT implementation of exponential Euler
and ETD2RK, again we compute once and for all the needed matrix functions ϕ1(τAµ) and
ϕ2(τAµ) before starting the temporal integration, and we then combine them suitably at each
time step. This operation requires a single Tucker operator for the first order scheme and two
for the second order one, as for the aforementioned Lawson schemes, plus the action Kuuun. The
number of time steps for each method, for both the PHISPLIT and PHIKS implementations, is
reported in Table 3, while the reached relative errors and the wall-clock times are summarized
in Figure 4. First of all, we notice that all the methods show the expected convergence rate,
reported in Table 3 as well. The Lawson–Euler method and the exponential Euler scheme in
its PHIKS implementation (see top plot of Figure 4) perform equally well, even if the former
requires much more time steps. Overall, the exponential Euler method in its PHISPLIT variant
is roughly 10 times faster to reach the highest accuracy in this experiment. If we consider the
second order methods (bottom plot of Figure 4), we observe that the Lawson2b scheme needs
much more wall-clock time to reach the same level of accuracy of the other methods, and over-
all the most efficient method is ETD2RK in the PHISPLIT variant. In this plot we report also
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Lawson–Euler
steps 800 8800 16800 24800 32800
order – 1.00 1.00 1.00 1.00

exp Euler PHIKS
steps 50 450 850 1250 1650
order – 1.03 1.00 1.00 1.00

exp Euler PHISPLIT
steps 50 450 850 1250 1650
order – 1.03 1.01 1.00 1.00

Lawson2b
steps 1500 5500 9500 13500 17500
order – 1.96 1.99 2.00 2.00

ETD2RK PHIKS
steps 20 80 140 200 260
order – 1.94 1.97 1.98 1.99

ETD2RK PHISPLIT
steps 40 140 240 340 440
order – 2.10 2.04 2.03 2.02

Table 3: Number of time steps and observed convergence rates for the time integration of the
semidiscretization of the ADR equation (28) up to final time T = 1 , with different exponential
integrators. Here we considered n1 = 40, n2 = 41 and n3 = 42 inner space discretization points
for the x1, x2 and x3 variables, respectively. The achieved errors and the wall-clock times are
displayed in Figure 4.

Lawson–Euler
steps 800 8800 16800 24800 32800
order – 1.00 1.00 1.00 1.00

exp Euler PHIKS
steps 50 450 850 1250 1650
order – 1.02 1.00 1.00 1.00

exp Euler PHISPLIT
steps 50 450 850 1250 1650
order – 1.03 1.01 1.00 1.00

Lawson2b
steps 3000 4500 6000 7500 9000
order – 1.79 1.87 1.92 1.94

ETD2RK PHIKS
steps 20 80 140 200 260
order – 1.94 1.97 1.98 1.99

ETD2RK PHISPLIT
steps 40 140 240 340 440
order – 2.10 2.04 2.03 2.02

Table 4: Number of time steps and observed convergence rates for the time integration of the
semidiscretization of the ADR equation (28) up to final time T = 1 , with different exponential
integrators. Here we considered n1 = 80, n2 = 81 and n3 = 82 inner space discretization points
for the x1, x2 and x3 variables, respectively. The achieved errors and the wall-clock times are
displayed in Figure 5.

the results obtained with the internal MATLAB ode23t implicit integrator. It is an implementa-
tion of the trapezoidal rule with variable step size, which is suggested for stiff problems at low
accuracies. Nevertheless, it performs worse than the considered exponential integrators.
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Figure 4: Achieved errors in the infinity norm and wall-clock times in seconds for the solution
of the semidiscretization of the ADR equation (28) up to final time T = 1, with different ex-
ponential integrators of order one (top) and order two (bottom). Here we considered n1 = 40,
n2 = 41 and n3 = 42 inner space discretization points for the x1, x2 and x3 variables, respec-
tively. The number of time steps for each exponential method is reported in Table 3. The input
tolerances (both absolute and relative) for ode23t are 8e−3, 4e−5, 1e−5, and 5e−6.

Finally, we repeat the experiment with n1 = 80, n2 = 81, and n3 = 82 inner discretization
points for the x1, x2 and x3 variables, respectively. The number of time steps for each method
is reported in Table 4, while the relative errors and the wall-clock times are summarized in
Figure 5. Again, we notice that all the methods show the expected convergence rate, reported
in Table 4 as well. In particular, for large time step sizes, the Lawson2b method suffers from
an order reduction. This is expected, as in these cases the problem is more stiff, and schemes
which employ just the exponential function are affected by this phenomenon (see, for instance,
Reference [18]). Then, from Figure 5 we observe that the PHISPLIT approach is in any case the
most efficient among all the methods and techniques considered, with an increasing speedup for
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Figure 5: Achieved errors in the infinity norm and wall-clock times in seconds for the solution
of the semidiscretization of the ADR equation (28) up to final time T = 1, with different ex-
ponential integrators of order one (top) and order two (bottom). Here we considered n1 = 80,
n2 = 81 and n3 = 82 inner space discretization points for the x1, x2 and x3 variables, respec-
tively. The number of time steps for each method is reported in Table 4.

more stringent accuracies. More in detail, compared with its PHIKS counterparts, the PHISPLIT

implementations are roughly 3.5 time faster, even if (in general) they require more time steps
to reach a comparable accuracy. On the other hand, the Lawson schemes perform poorly. This
is mainly due to the requirement of a large number of time steps to reach the accuracy of
the other methods, which is particularly evident for the second order schemes (see bottom of
Table 4 and Figure 5). Moreover, while ETD2RK in its PHISPLIT variant reached the most
stringent accuracy in less than 10 seconds, Lawson2b was not able to reach an accuracy 10
times larger in 100 seconds. Hence, we decided to stop the simulation with this integrator with
a larger number of time steps. Finally, concerning the internal MATLAB ODE suite, none of the
methods was able to output a solution within 10 minutes.
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5 Conclusions
In this paper, we presented how it is possible to efficiently approximate actions of ϕ-functions
for matrices with d-dimensional Kronecker sum structure using a µ-mode based approach. The
technique, that we call PHISPLIT, is suitable when integrating initial valued ordinary differential
equations with exponential integrators up to second order. It is based on an inexact direction
splitting of the matrix functions involved in the time marching schemes which preserves the
order of the method. The effectiveness and superiority of the approach, with respect to an-
other technique to compute actions of ϕ-functions in Kronecker form, has been shown on a
two-dimensional problem from linear quadratic control and on a three-dimensional advection–
diffusion–reaction equation, using a variety of exponential integrators. Interesting future devel-
opments would be to generalize the approach for higher order integrators and performing GPU
simulations with the PHISPLIT technique, possibly in single and/or half precision (which are
compatible with the magnitude of the errors of the temporal integration), for different problems
from science and engineering.
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Abstract
We discuss a “bottom-up” algorithm for Tchakaloff-like compression of QMC (Quasi-

MonteCarlo) integration on surfaces that admit an analytic parametrization. The key tools
are Davis-Wilhelmsen theorem on the so-called “Tchakaloff sets” for positive linear func-
tionals on polynomial spaces, and Lawson-Hanson algorithm for NNLS. This algorithm
shows remarkable speed-ups with respect to Caratheodory-like subsampling, since it is
able to work with much smaller matrices. We provide the corresponding Matlab code
Qsurf, together with integration tests on regions of different surfaces such as sphere, torus,
and a smooth Cartesian graph.

Keywords: Quasi-MonteCarlo formulas, surface integrals, analytic parametrization, low-
discrepancy sequences, rejection sampling, Tchakaloff sets, quadrature compression, Davis-
Wilhelmsen theorem, NonNegative Least Squares. (MSC2020: 65C05, 65D32)

1 Introduction
In the recent study [14], we have considered the compression problem for Quasi-MonteCarlo
(QMC) surface integration on multibubbles (the surface of a ball union in R3), which can have
a quite complicated structure. Indeed, numerical modelling with multibubbles is relevant in
several applications, but compression of QMC integration seemed an overlooked approach,
especially in the case of surface integrals.

In this paper, we extend such an approach to compressed QMC formulas for general inte-
gration problems on compact subsets of surfaces in R3, admitting an analytic parametrization.
Such formulas preserve the approximation power of QMC up to the best uniform polynomial
approximation error of a given degree to the integrand, but using a much lower number of
sampling points.
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The key tools are Davis-Wilhelmsen theorem on the so-called “Tchakaloff sets” for positive
linear functionals and Lawson-Hanson algorithm for NNLS, which allows to extract a set of
“equivalent” re-weighted nodes from a huge uniformly distributed sequence with respect to the
surface measure, by working in a “bottom-up” mode. Such a sequence can be obtained for
example from a bivariate Halton sequence by an area-preserving map, when available, or by
the probabilistic method of rejection sampling, which has been extended to the low-discrepancy
deterministic setting, cf. e.g. [20, 31]. On the other hand, there are other relevant QMC point
sequences on manifolds, see e.g. [2, 3].

The “bottom-up” approach shows remarkable speed-ups with respect to Caratheodory-like
subsampling (cf. e.g. [16, 19, 21, 25, 29]), since it is able to work with much smaller matrices.
We stress that one of the main difficulties consists in adapting the compression algorithm to
work on the appropriate spaces of trivariate polynomials restricted to the surface, since the
dimension of trivariate polynomial spaces can collapse in the case of algebraic surfaces.

The paper is organized as follows. In Section 2 we briefly discuss the theoretical back-
ground and the main idea of the “bottom-up” compression algorithm. Then, we sketch the
algorithm, that has been implemented in Matlab, and comment on the main computational is-
sues. Finally, in Section 3 we present some numerical examples concerning regions of sphere
and torus, and the Cartesian graph of an analytic function. All the codes and demos are all
freely available at [15].

2 QMC compression on surfaces
The possibility of compressing QMC integration rests on a somehow overlooked but relevant
result of quadrature theory, originally proved by Davis [5] and then extended by Wilhelmsen
[30]. Only recently this theorem has been rediscovered as a basic tool for positive cubature via
adaptive NNLS moment-matching, cf. [13, 18, 26, 27].
Theorem 1. (Davis, 1967 - Wilhelmsen, 1976) Let { f j}1≤ j≤N be continuous, real-valued, lin-
early independent functions defined on a compact set Ω ⊂ Rd , and F = span( f1, . . . , fN).
Assume that F satisfies the Krein condition (i.e. there is at least one f ∈ F which does not
vanish on Ω) and that L is a positive linear functional on F , i.e. L( f ) > 0 for every f ∈ F ,
f ≥ 0 not vanishing everywhere in Ω.

If {Pi}∞
i=1 is an everywhere dense subset of Ω, then for sufficiently large m, the set Xm =

{Pi}i=1,...,m is a “Tchakaloff set”, i.e. there exist weights wk > 0, k = 1, . . . ,ν , and nodes
{Zk}k=1,...,ν ⊂ Xm ⊂ Ω, with ν = card({Zk})≤ N, such that

L( f ) = ℓ( f ) =
ν

∑
k=1

wk f (Zk) , ∀ f ∈ F . (1)

Davis-Wilhelmsen theorem is a constructive generalization of the well-known Tchakaloff
theorem [28] on the existence of positive quadrature formulas. But, just in view of its generality,
it can be directly applied to a discrete functional like a QMC formula on Ω = J , J being a
compact region of a surface S ⊂ R3

L( f ) = LQMC( f ) =
σ(J )

M

M

∑
i=1

f (Pi)≈
∫
J

f dσ , f ∈C(J ) , (2)

where
XM = {Pi}i=1,...,M , M > N ,
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is a uniformly distributed sequence on J and σ is the surface measure. Typically one generates
a uniformly distributed sequence of cardinality say M0 on the bounding surface S ⊇ J , from
which sequence on J is extracted by a suitable in-domain algorithm. We observe that if σ(J )
is unknown or difficult to compute, it can be approximated as σ(J )≈ σ(S )M/M0.

Positivity of the functional for f ∈ F = P3
n(J ) (the space of trivariate polynomials of

total degree not exceeding n restricted to J ), is ensured whenever the set XM is P3
n(J )-

determining, i.e. a polynomial vanishing there vanishes everywhere on J , or equivalently
dim(P3

n(XM)) = N = dim(P3
n(J )), or even

rank(VM) = N , VM =V (n)(XM) = [ f j(Pi)] ∈ RM×N (3)

where VM is the corresponding rectangular Vandermonde-like matrix. Notice that, XM being a
sequence, for every k ≤ M we have that

Vk =V (n)(Xk) = [(VM)i j] , 1 ≤ i ≤ k , 1 ≤ j ≤ N . (4)

We stress that the full rank requirement for VM is not restrictive, in practice, when S is a
surface that admits an analytic parametrization, the subset J is P3

n(S )-determining and the
points are uniformly distributed with respect to the surface measure. Indeed, the probability that
det(VN) = 0 dealing with uniformly distributed points is null, as is ensured by the following
proposition which is a special case of a general result proved in [7] in the case of continuous
random point distributions.

Proposition 1. Let S ⊂ R3 be a surface that admits an analytic parametrization P = Ψ(u,v)
from a connected open set D ⊂ R2, i.e. Ψ = (Ψ1,Ψ2,Ψ3) where Ψi : D → R3 are analytic and
Ψ(D) = S . Moreover, let { f j}1≤ j≤N be a basis of P3

n(S ) and {(ui,vi)}i≥1 an equidistributed
sequence on D with respect to any given probability density φ(u,v).

Then, the points {Pi = Ψ(ui,vi)}1≤i≤N are almost surely unisolvent for polynomial interpo-
lation in P3

n(S ).

Remark 1. We can apply this proposition to the case where the parametrization is regular
(so that the surface area element ∥∂uΨ×∂vΨ∥2/σ(J ) is well-defined), dim(P3

n(S )) = N =
dim(P3

n(J )), and dσ = φ(u,v)dudv with density

φ(u,v) = IJ (Ψ(u,v))∥∂uΨ×∂vΨ∥2/σ(J ) , (5)

IJ denoting the indicator function of J .

Remark 2. To be rigorous, we should notice that Proposition 1 concerns random sequences,
whereas here we deal with quasi-random sequences, where we can expect, and we have indeed
verified experimentally, that the full-rank property of VM in practice holds. In order to con-
struct a sequence {Pi}1≤i≤N that be uniformly distributed on J with respect to the surface
measure, we can adopt the classical probabilistic method of rejection sampling on D applied
to the density (5), that has been extended to low-discrepancy sequences; cf. [20, 31] with the
references therein. Clearly, a suitable “in-domain” algorithm for J has to be at hand.

Remark 3. We recall that polynomial spaces can collapse on algebraic surfaces, i.e. it happens
that dim(P3

n(J )) = dim(P3
n(S )) < dim(P3

n(R3)) = (n+ 1)(n+ 2)(n+ 3)/6. For example,
if J is a subset with internal points w.r.t. the topology of the sphere S2 (e.g. a spherical
polygon as in the first example below), we have that dim(P3

n(J )) = dim(P3
n(S

2)) = (n+1)2;
we refer the reader, e.g., to [4] concerning the delicate matter of determining polynomial spaces
dimension on algebraic varieties.
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In view of the results quoted above, when M ≫ N we can then try to find a Tchakaloff set
Xm ⊂ XM, with N ≤ m < M, such that there exists a sparse nonnegative solution vector u to the
underdetermined moment-matching system

V t
mu = λ =V t

Me , e =
σ(J )

M
(1, . . . ,1)t . (6)

In practice, we solve (6) via Lawson-Hanson active-set method [17] applied to the NNLS
problem

min
u≥0

∥V t
mu−λ∥2 , (7)

accepting the solution when the residual size is small, say

∥V t
mu−λ∥2 < ε (8)

where ε is a given tolerance. Then the nonzero components of u provide nodes and weights of
a compressed QMC formula extracted from Xm, that is {wk} = {ui : ui > 0} and {Zk} = {Pi :
ui > 0}, giving

ℓQMC( f ) =
ν

∑
k=1

wk f (Zk) , ν ≤ N ≪ M , (9)

where ℓQMC( f ) = LQMC( f ) for every f ∈ P3
n(J ).

It is worth recalling that, in the case m = M, Caratheodory theorem on finite-dimensional
conic combinations (applied to the columns of V t

M) would ensure directly the existence of a
Tchakaloff-like representation of the QMC functional (cf. [21] for a discussion on this point
in the general framework of discrete measure compression by “Caratheodory-Tchakaloff sub-
sampling”). In such a way, however, working with say an order of 105 −106 nodes, we would
have to manage a huge matrix, that is we would have to solve the huge NNLS problem

min
u≥0

∥V t
Mu−λ∥2 . (10)

On the contrary, we can substantially reduce the computation cost by solving an increasing
sequence of much smaller problems like (7) with m := m1,m2,m3, . . . and m1 < m2 < m3 <
· · · ≤ M,

min
u≥0

∥V t
m j

u−λ∥2 , j = 1,2,3, . . . , m1 ≥ N , (11)

corresponding to increasingly dense subsets Xm1 ⊂ Xm2 ⊂ ·· · ⊆ XM, until the residual becomes
sufficiently low. We may call this procedure a “bottom-up” approach to QMC compression.
Indeed, as shown in [13], with a suitable choice of the sequence {m j} the residual becomes
extremely small in few iterations, with a substantial speed-up with respect to (10).

Now, following [13] it is easy to derive the following error estimate

|ℓQMC( f )−
∫
J

f dσ | ≤ EQMC( f )+2 µ(J )En( f ;XM)

≤ EQMC( f )+2 µ(J )En( f ;J ) , (12)

valid for every f ∈ C(J ), where EQMC( f ) = |LQMC( f )−
∫
J f dσ | and we define En( f ;K) =

infp∈P3
n(K) ∥ f − p∥∞,K with K discrete or continuous compact set.

The meaning of (12) is that the compressed QMC functional ℓQMC retains the approxima-
tion power of the original QMC formula, up to a quantity proportional to the best polynomial
approximation error to f in the uniform norm on XM (and hence by inclusion in the uniform
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norm on J ). We recall that the latter can be estimated depending on the regularity of f by
multivariate Jackson-like theorems, cf. e.g. [22] for volume integrals where J is the closure
of a bounded open set and [23] for the case of the sphere. On the other hand, we do not deepen
here the topic of QMC convergence and error estimates, in particular on manifolds, referring
the reader to specific papers and monographs, like e.g. [2, 3, 12] .

2.1 Algorithm description and computational issues
In this section we sketch the method implementation in the form of a pseudo-code and discuss
its main computational features.

Algorithm Qsurf: Bottom-up compression of QMC integration on a compact subset J of a
surface S ⊂ R3 with a regular analytic parametrization on a domain D ⊂ R2

• input: the bounding surface measure σ(S ), possibly the measure σ(J ), the cardinal-
ity M0 of a uniformly distributed sequence on S , the cardinality increase factor θ > 1,
the moment-matching tolerance ε , the residual decrease threshold τ > 1

(i) generate M0 low-discrepancy points on the bounding surface S ⊇ J (for example by
rejection sampling on D w.r.t. the surface measure density) and extract the points X =
XM = {Pi}i=1,...,M that lie on J (by a suitable “in-domain” algorithm)

(ii) if unknown, approximate σ(J ) as σ(J ) := σ(S )M/M0

(iii) % selecting a basis of P3
n(X)

(iii1) take a polynomial basis {p1, . . . , pV } of P3
n, V = (n+1)(n+2)(n+3)

6

(iii2) compute the Vandermonde-like matrix C := [p j(Pi)] ∈ RM×V

(iii3) compute N := rank(CV ) where CV = [(C)i j], 1 ≤ i, j ≤ V

(iii4) compute the QR factorization with column pivoting Cπ

V =QR where π =(π1, . . . ,πV )
is the column permutation vector

(iii5) set VM := [(C)i j], 1 ≤ i ≤ M, j = π1, . . . ,πN

(iv) compute the QMC moments λ :=V t
Me, e = σ(J )/M (1, . . . ,1)t

(v) % bottom-up QMC compression

(v1) initialize m, N ≤ m ≪ M and momtype := 0

(v2) set Vm := [(VM)i j], 1 ≤ i ≤ m, 1 ≤ j ≤ N

(v3) compute the QR factorization Vm = QmRm

(v4) if momtype = 0 then

– compute the modified QMC moments qm = (R−1
m )tλ by solving the system Rt

mqm =
λ via Gaussian elimination with row pivoting

– set Am = Qm

else
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– compute the modified QMC moments qm = (R−1
m )tλ = (VMR−1

m )te as qm :=At
Me, by

solving the matrix equation Rt
mAt

M =V t
M via Gaussian elimination with row pivoting

– set Am = [(AM)i, j], 1 ≤ i ≤ m, 1 ≤ j ≤ N

(v5) compute a sparse solution u to the NNLS problem

min
u≥0

∥At
mu−qm∥2

by Lawson-Hanson active-set algorithm

(v6) compute the relative residual res := ∥V t
mu−λ∥2/∥λ∥2

(v7) if res0/res > τ & m < M then
(v7a) if momtype = 0 then

- set momtype := 1 and goto (v2)
else
- set m := M and goto (v2)

(v8) if res > ε &⌈θm⌉ ≤ M then
- set m := ⌈θm⌉, res0 := res and goto (v2)

(vi) select the indexes J = {i : ui > 0} and set w := u(J) and Z := X(J)

• output: the weights {wk} and nodes {Zk} ⊂ X of a compressed QMC formula on J
with moment-matching residual res

Now, some observations on delicate aspects are in order. Step (iii) is a key point in the case
of surface integration. As for the starting polynomial basis, for conditioning problems we adopt
the product Chebyshev total-degree basis of the smaller bounding box say [a1,b1]× [a2,b2]×
[a3,b3]⊃ X , namely

p j(x,y,z) = Tα1( j)(σ1(x)) ·Tα2( j)(σ2(y)) ·Tα3( j)(σ3(z)), j = 1, . . . ,V ,

σi : [ai,bi] 7→ [−1,1] , σi(t) =
2t −bi −ai

bi −ai
, i = 1,2,3 ,

where j 7→ α( j) corresponds to the graded lexicographical ordering of the 3-indexes α =
(α1,α2,α3), 0 ≤ α1 +α2 +α3 ≤ n.

Moreover, we recall that dim(P3
n(X)) is simply the rank of the corresponding rectangular

Vandermonde-like matrix C. In step (iii4), instead, we work with the principal square submatrix
CV . As already observed in Section 2, with V ≥ dim(P3

n(J )) uniformly distributed points on
J , the probability that such a rank be lower than dim(P3

n(J )) is null, so that “almost-surely”
Wilhelmsen theorem applies. In Matlab, one can use directly the built-in function rank based
on an economy-size version of SVD. Notice that we are using a numerical rank (obtained by
discarding the singular values below a tolerance close to machine precision), not the true rank.
Nevertheless, dealing with polynomials restricted to X this is numerically equivalent to work,
up to very small errors, with the true polynomial space. We stress that when V ≪ M, using CV

instead of C gives experimentally a substantial speed-up to the rank computation, by a factor
roughly of the order of M/V .

The polynomial basis selection, i.e. the determination of a set of linearly independent poly-
nomials on J within the starting basis, is performed in (iii4) by a QR factorization with
column pivoting of the Chebyshev-Vandermonde matrix CV (again, an economy-size version
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can be used in Matlab that produces only the first N columns of Q and a column permuta-
tion vector). In such a way we select a polynomial basis of P3

n(X) by the first N components
π1, . . . ,πN of the column permutation, say ( f1, . . . , fN) = (pπ1, . . . , pπN ).

We can now turn to the second key step of the algorithm, that is the extraction of a com-
pressed QMC formula in (v). As already observed, this is based on Wilhelmsen theorem, using
just XM as extraction set, in a “bottom-up” fashion. This procedure avoids working directly on
the complete matrix VM (cf. (10)), as done instead in other previous approaches to QMC com-
pression like [6], cf. also the discussion in [1, 13]. Indeed, the overall number of points, i.e. of
rows of VM, can be huge, up to the order of 105 −106. In practice, we proceed along increas-
ingly dense subsequences of the overall sequence, solving the corresponding NNLS problems
and stopping when the relative moment-matching residual becomes sufficiently small.

To this purpose the classical Lawson-Hanson iterative method turns out to be a good choice,
since it automatically seeks a sparse solution with a number of nonzeros not exceeding N. The
method is implemented in most numerical programming environments, e.g. in Matlab by the
built-in function lsqnonneg. On the other hand, there are improvements of the algorithm,
cf. for example [24] for a survey, and the recent implementation named LHDM based on
the concept of “Deviation Maximization” instead of “column pivoting” for the underlying QR
factorizations, cf. [8, 9]. Indeed, in the present framework we have adopted LHDM, since it
gives experimentally a speed-up of at least 2 with respect to lsqnonneg.

In order to cope ill-conditioning of the matrices used in the sequence of NNLS problem,
that worsens increasing the degree, we perform an orthogonalization of Vm by QR factorization,
that corresponds to work with the discrete orthogonal basis ( f1, . . . , fN)R−1

m . Such a basis is
orthogonal with respect the counting measure supported at X , i.e. with respect to the discrete
scalar product ⟨ f ,g⟩Xm = ∑

m
i=1 f (Pi)g(Pi). Consequently, the original QMC moments have to

be modified as in (v4).
It should be stressed that, due to the inherited ill-conditioning of the triangular factor Rm by

Vm, that increases with the degree, explicit inversion of Rm in (v4) is avoided by solving linear
systems via Gaussian elimination with row pivoting (that is in Matlab simply by applying the
backslash operator).

We also notice that the complete matrix VM is used only to compute the QMC moments
in (iv), unless (v7a) has to be followed due to a residual decrease factor below the required
threshold. Such a phenomenon turns out to occur seldom with high degrees and strong ill-
conditioning. In such a case, computation of AM = VMR−1

m becomes the computational bulk
slowing down the whole process.

3 Numerical tests and demos
In order to show the effectiveness of the bottom-up compression procedure of QMC surface
integration, we present some numerical tests, where we compare “Caratheodory-Tchakaloff”
compression of multivariate discrete measures as implemented in the general-purpose package
dCATCH [10], with the bottom-up approach described above. The Matlab codes and demos,
collected in a package named Qsurf, are freely available at [15].

In all the tests we have set the parameters of the algorithm to ε = 10−10, θ = 2, τ = 10, and
m has been initialized to 2N. The tests have been performed with a CPU AMD Ryzen 5 3600
with 48 GB of RAM, running Matlab R2022a.

We point out that in all the numerical experiments we have adopted Halton points but alter-
natively the software provides the usage of other sequences (e.g. Sobol sets).
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3.1 Sphere region
In the first example we consider a large region J of the sphere, namely a spherical polygon
(a polygon whose vertices are on the sphere and whose sides are great circle arcs) representing
an approximation of continental Africa (see Fig. 1). In this case it is convenient to choose a
spherical cap (say C ⊃ J ) centered at the polygon centroid as bounding surface, S = C , and
we can apply a rotation to the sphere in such a way that the centroid is at the north pole (this
does not clearly affect surface integration on the region).

The indicator function of J can be easily implemented by stereographic projection from
the south pole on the tangent plane at the north pole, that generates a planar polygon for which
the Matlab inpolygon works quite efficiently. Observe that this procedure can be applied to
any rotated spherical polygon that does not contain the south pole.

Then, we can parametrize the polar cap by the area-preserving map (i.e., ∥∂uΨ×∂vΨ∥2 = 1)

Ψ(u,v) = r(
√

1−u2 cos(v),
√

1−u2 sin(v),u) , (13)

(u,v)∈D=(c,1)×(0,2π), where r is the sphere radius and c is the z-quote of the cap boundary
(in practice, working with the open rectangle D we loose the Greenwich 0-meridian arc cutting
the cap, that has null surface measure and thus surface integration is not affected).

Now, starting from low-discrepancy points in D, e.g. Halton points, we get low-discrepancy
points on the cap S and finally on the spherical polygon J . On the other hand, Proposition 1
substantially applies since the map Ψ is analytic and regular on D (see also Remarks 1-2), and
hence we can resort to the bottom-up algorithm Qsurf in order to compress QMC integration
on a huge number M of mapped low-discrepancy points in J . To the purpose of illustration,
in Figure 1 we show the distribution of 64 compressed QMC points extracted from about 2400
Halton points, still matching the QMC moments on J , up to degree 7.

In Table 1 we report the results obtained by applying the QMC compression with more than
one million points on the spherical polygon, taking degrees n = 3,6,9,12,15, and accepting (8)
with a tolerance ε = 10−10. In particular, we display the cardinalities and compression ratios,
the cpu-times for the construction of the low-discrepancy sequence (cpu Halton seq.) and those
for the computation of the compressed rules.

The advantage of the new approach is two-fold, since in all the tests an inferior cputime
with respect to dCATCH is required to determine the compressed rule and, differently from
dCATCH, the solution of (7) always satisfies the moment residual criterion (8). In addition,
less memory is necessary due to the inherent structure of the bottom-up approach, which works
on much smaller matrices.

Finally, in Table 2, we approximate the integrals
∫
J gk dσ on three test functions, namely

setting P = (x,y,z)

g1(P) = exp(−∥P−P0∥2) (14)
g2(P) = cos(x+ y+ z) (15)
g3(P) = ∥P−P0∥5

2 (16)

P0 being the centroid of the spherical polygon J . The reference values of the integrals have
been computed by a QMC rule with very high cardinality (more than 20 million points). We
display the relative errors of the QMC rule with more than one million points and of the two
proposed compressions. As expected from estimate (12), by increasing the QMC moment-
matching degree the errors tend to stabilize around the underlying QMC error.
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Figure 1: 64 compressed QMC points (red) at exactness degree n = 7, extracted from about
2400 mapped Halton points (blue) on the surface of a spherical polygon approximating conti-
nental Africa.

3.2 Torus region
The second example concerns surface integration on a region J of a torus T , corresponding
to a section by a plane, excluding the points that are internal to a ball intersecting the torus;
see Fig. 2. In particular, we consider the torus with center (0,0,0) and radii r = 2, R = 3,
cut by the ball B((0,4,0),

√
6) and the upper half-space of R3 w.r.t. the plane of equation

−x/4+ y+4z = 0.
In this case it is not straightforward to apply a standard integrator, since one should track

the domain Ψ−1(J ) in D and then apply there a suitable cubature rule. On the contrary,
QMC integration can be more easily constructed by rejection sampling in standard toroidal
coordinates (here the bounding surface S = T is the whole torus)

Ψ(u,v) = ((R+ r cos(u))cos(v),(R+ r cos(u))sin(v),r sin(u)) , (17)

(u,v) ∈ D = (0,2π)× (0,2π), where R and r are the big and small torus radii respectively, and
∥∂uΨ×∂vΨ∥2 = r(R+ r cos(v)). Observe that considering the open rectangle Ω we loose the
possible intersection of J with two circles, that have null surface measure and do not affect
surface integration. Moreover, the indicator function of J can be implemented by the simple
inequalities that describe an half-space determined by the cutting plane, and the interior of the
ball. Again, the map Ψ is analytic and regular so that Proposition 1 with Remarks 1-2 applies
and algorithm Qsurf can be used. In Figure 2 we show the distribution of 64 compressed QMC
points, extracted from about 8000 mapped Halton points after selection by rejection sampling
w.r.t. the surface measure density, still matching the QMC moments on J up to degree 7.

In Table 3 we again report the results obtained by applying QMC compression with more
than one million points on the region J . As for the spherical polygon, we consider degrees
n = 3,6,9,12,15, accepting (8) with a tolerance ε = 10−10. In all the tests an inferior cputime
is required by Qsurf to determine the compressed rule and, while dCATCH fails for degree
n = 15. Moreover, the solution by the new approach to (7) always satisfies the moment residual
criterion (8).
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deg 3 6 9 12 15
card. QMC M = 1,184,341

card. dCATCH 16 49 98 165 239
card. Qsurf 16 49 100 169 256
compr. ratio 7.4e+04 2.4e+04 1.1e+04 7.0e+03 4.6e+03

cpu Halton seq. 4.53e+01s
cpu dCATCH 4.1e+00s 1.5e+01s 4.6e+01s 1.3e+02s 3.1e+02s

cpu Qsurf 3.8e-01 1.2e+00s 3.1e+00s 6.4e+00s 1.3e+01
speed-up 10.8 12.5 14.8 20.3 23.8

mom. resid. dCATCH 4.3e-12 4.3e-12 ⋆ 2.9e-04 ⋆ 6.2e-04 ⋆ 2.0e-03
mom. resid. Qsurf

iter. 1 3.7e-16 8.5e-01 2.9e+01 7.9e+01 1.4e+01
iter. 2 6.5e-02 1.7e-04 3.8e-02 7.6e-01
iter. 3 6.3e-16 1.1e-15 1.3e-15 1.7e-02
iter. 4 2.8e-15

Table 1: QMC compression by with more than one million points on a spherical polygon approximating
continental Africa.

deg 3 6 9 12 15
EQMC(g1) 3.0e-05

EdCATCH(g1) 1.0e-03 3.1e-05 2.7e-05 3.2e-05 1.7e-05
EQsurf(g1) 1.2e-04 3.0e-05 3.0e-05 3.0e-05 3.0e-05
EQMC(g2) 1.5e-05

EdCATCH(g2) 8.9e-05 1.5e-05 2.5e-05 4.9e-07 3.7e-06
EQsurf(g2) 1.4e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05
EQMC(g3) 8.6e-04

EdCATCH(g3) 2.4e-02 1.3e-03 7.8e-04 8.2e-04 5.8e-04
EQsurf(g3) 2.3e-02 7.7e-04 8.3e-04 8.6e-04 8.6e-04

Table 2: Relative integration errors for the three test functions (14)-(16) on a spherical polygon approx-
imating continental Africa, by means of QMC, dCATCH and Qsurf.

Lastly, in Table 4 we approximate the value of
∫
S gk dσ , k = 1,2,3, with the same func-

tions defined in (14)-(16) and P0 = (0,−3,2). The reference values of the integrals have been
computed by means of a QMC rule with very high cardinality (more than 20 million points).
We display the relative errors of the QMC rule with about one million points and of the two
proposed compressions. Notice again that, as expected from estimate (12), by increasing the
QMC moment-matching degree the errors tend to stabilize around the underlying QMC error.

3.3 Cartesian graph
In the third example we consider as a regular surface S the Cartesian graph of an analytic
function, namely the popular Franke’s surface, which is the graph of a linear combination of
Gaussians

F(u,v) =
3
4

e−
1
4 ((9u−2)2+(9v−2)2)+

3
4

e−
1

49 ((9u+1)2+(9v+1)2)

+
1
2

e−
1
4 ((9u−7)2+(9v−3)2)− 1

5
e−((9u−4)2+(9v−7)2) , (18)
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(a) (b)

Figure 2: 100 compressed QMC points (red) at exactness degree n = 7, extracted from about
8000 mapped Halton points (blue) by rejection sampling on a torus region, determined by a
cutting ball and plane (view from different perspectives).

deg 3 6 9 12 15
card. QMC M = 1,006,200

card. dCATCH 20 74 164 290 450
card. Qsurf 20 74 164 290 452
compr. ratio 5.0e+04 1.3e+04 6.1e+03 3.5e+03 2.2e+03

cpu Halton seq. 1.0e+01s
cpu dCATCH 2.8e+00s 1.6e+01s 4.4e+01s 1.2e+02s 3.0e+02s

cpu Qsurf 2.7e-01s 9.9e-01s 2.9e+00s 6.3e+00s 2.2e+01s
speed-up 10.4 16.2 15.2 19.0 13.6

mom. resid. dCATCH 1.2e-11 1.2e-11 1.2e-11 1.2e-11 ⋆ 9.1e-07
mom. resid. Qsurf

iter. 1 3.0e-16 8.9e-01 1.3e+00 6.4e+00 2.5e+01
iter. 2 1.1e-15 1.9e-15 2.6e-01 1.3e-01
iter. 3 3.3e-15 4.5e-15

Table 3: QMC compression with more than one million points on the torus region in Fig. 2.

(u,v) ∈ D = (0,1)× (0,1).
We take two regions of such a surface, the first determined by a cutting ball and plane,

whereas the second is a disconnected one determined by three cutting balls; see Figs. 3 and
4. Again, the map Ψ is analytic and regular, since ∥∂uΨ×∂vΨ∥2 =

√
1+(∂uF)2 +(∂vF)2, so

that Proposition 1 with Remarks 1-2 applies and algorithm Qsurf can be used.
The numerical tests are collected in Tables 5-8, and show results that are in line with those

of the previous examples, apart from the fact that the numerically determined dimension of the
trivariate polynomial spaces does not collapse on the surface (at least up to degree 9). This
is expected since Franke’s surface is a transcendental, i.e. not algebraic, surface. Notice in
particular that at degrees 9, 12, 15, dCATCH fails to reach the required residual tolerance,
whereas Qsurf always succeeds in at most 4-5 iterations.

Remark 4. In the numerical code there are some parameters ε , θ and τ that must be specified.
The cardinality increase factor θ , becomes important when compression is not achieved,

using the current subset of the QMC nodes. A small θ would propose a new pointset that may
fail at the next stage because not dense enough, while a large value would instead define a too
dense set, possibly increasing the algorithm cputime. Thus we decided as reasonable choice to
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(a) (b)

Figure 3: 120 compressed QMC points (red) at exactness degree n = 7, extracted from about
6500 mapped Halton points (blue) by rejection sampling on a Franke’s surface region, deter-
mined by a cutting ball and plane (view from different perspectives).

(a) (b)

Figure 4: 120 compressed QMC points (red) at exactness degree n = 7, extracted from about
6500 mapped Halton points (blue) by rejection sampling on a Franke’s surface disconnected
region, determined by three cutting balls (view from different perspectives).
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deg 3 6 9 12 15
EQMC(g1) 1.7e-04

EdCATCH(g1) 3.5e-01 1.2e-02 2.5e-03 2.2e-04 2.2e-04
EQsurf( f1) 5.5e-01 6.5e-02 2.4e-03 5.4e-04 1.5e-04
EQMC(g2) 2.4e-04

EdCATCH(g2) 3.5e-01 2.5e-01 7.2e-03 1.3e-04 2.4e-04
EQsurf( f2) 1.7e+00 1.3e-01 1.5e-03 1.8e-04 2.4e-04
EQMC(g3) 5.2e-06

EdCATCH( f3) 4.3e-03 2.3e-06 5.2e-06 5.2e-06 5.2e-06
EQsurf(g3) 8.0e-03 3.1e-06 5.2e-06 5.2e-06 5.2e-06

Table 4: Relative errors for the three test functions (14)-(16) on the torus region of Fig. 2, by means of
QMC, dCATCH and Qsurf.

deg 3 6 9 12 15
card. QMC M = 1,293,600

card. dCATCH 20 84 212 407 586
card. Qsurf 20 84 220 442 701
compr. ratio 6.5e+04 1.5e+04 5.9e+03 2.9e+03 1.8e+03

cpu Halton seq. 1.8e+00s
cpu dCATCH 3.6e+00s 2.1e+01s 5.7e+01s 1.8e+02s 4.9e+02s

cpu Qsurf 3.5e-01s 1.4e+00s 3.8e+00s 2.0e+01s 2.7e+01s
speed-up 10.3 15.0 15.0 9.0 18.1

mom. resid. dCATCH 7.6e-12 7.6e-12 ⋆ 8.9e-04 ⋆ 2.9e-03 ⋆ 5.9e-03
mom. resid. Qsurf

iter. 1 1.9e-16 5.5e-01 1.5e+00 1.4e+01 3.4e+01
iter. 2 1.0e-15 1.8e-15 3.9e-01 1.9e+00
iter. 3 1.2e-02 4.2e-15
iter. 4 2.5e-15

Table 5: QMC compression with more than one million points on on the Franke’s surface region in Fig.
3.

set θ = 2, so doubling the cardinality of the pointset in case of failure.
To illustrate the effect of this choice, we consider the torus region in Figure 2, for degree

of exactness 6 and different values of θ , that is θ = 1.2,1.4, . . . ,5. In Figure 5 we take as
ordinate the median of the cputime of the bottom-up QMC compression over 10 tests. In such
experiment, values of θ in the interval [2,3] show a good behavior, justifying our choice.

Concerning the relative moment matching tolerance ε , as default we used ε = 10−10, in
view of the typical approximation quality of the QMC approximation. However if the initial
cardinality of the QMC rule is sufficiently large, there is numerical evidence that for mild
degrees of precision the value of ε can be set smaller, e.g. ε = 10−14.

Finally, recalling that the relative residual decrease threshold τ > 1 is important to deter-
mine if the residual error made by successive stages of the algorithm, say resold and resnew, is
stagnating, we set as default τ = 10, so detecting such an event when resold < 10resnew. We
decided for this option, since a much higher value would indicate stagnation even when it does
not happen, while a much smaller value would rarely detect such a situation.
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deg 3 6 9 12 15
card. QMC M = 1,305,444

card. dCATCH 20 84 212 405 612
card. Qsurf 20 84 220 448 735
compr. ratio 6.5e+04 1.6e+04 5.9e+03 2.9e+03 1.8e+03

cpu Halton seq. 1.74e+00s
cpu dCATCH 3.8e+00 s 2.2e+01 5.2e+01 1.9e+02s 5.0e+02s

cpu Qsurf 3.6e-01 1.4e+00 9.0e+00 3.9e+01 6.3e+01
speed-up 10.6 15.7 5.8 4.9 7.9

mom. resid. dCATCH 1.8e-12 1.8e-12 ⋆ 8.2e-04 ⋆ 2.4e-03 ⋆ 3.4e-03
mom. resid. Qsurf

iter. 1 6.0e-16 7.4e-02 7.7e-01 3.2e+01 3.4e+01
iter. 2 1.2e-15 2.4e-01 4.0e-01 6.1e+00
iter. 3 2.4e-01 8.5e-02 6.1e+00
iter. 4 1.6e-11 8.5e-02 9.2e-12
iter. 5 7.9e-12

Table 6: QMC compression with more than one million points on the on the Franke’s surface discon-
nected region in Fig. 4.

deg 3 6 9 12 15
EQMC(g1) 1.2e-05

EdCATCH(g1) 4.4e-03 1.1e-05 1.5e-06 8.1e-06 4.6e-05
EQsurf(g1) 6.7e-04 9.6e-06 1.2e-05 1.2e-05 1.2e-05
EQMC(g2) 3.0e-07

EdCATCH(g2) 7.8e-05 2.9e-07 3.6e-05 1.2e-04 6.3e-05
EQsurf(g2) 4.0e-05 3.0e-07 3.0e-07 3.0e-07 3.0e-07
EQMC(g3) 6.0e-05

EdCATCH(g3) 1.4e-01 3.8e-05 1.1e-04 2.8e-05 1.2e-04
EQsurf(g3) 2.2e-02 1.1e-04 6.1e-05 6.0e-05 6.0e-05

Table 7: Relative integration errors for the three test functions (14)-(16) on the Franke’s surface region
of Fig. 3, by means of QMC, dCATCH, Qsurf.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
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10
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1

Figure 5: Median of the cputime of the bottom-up QMC compression with degree of exactness
n = 6, over 10 tests, on a subregion of the torus, for several values of θ .
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deg 3 6 9 12 15
EQMC(g1) 1.3e-06

EdCATCH(g1) 4.6e-03 2.3e-06 1.7e-05 8.1e-06 2.1e-05
EQsurf(g1) 2.1e-03 9.7e-07 1.3e-06 1.3e-06 1.3e-06
EQMC(g2) 6.6e-05

EdCATCH(g2) 5.3e-05 6.6e-05 6.7e-05 9.1e-05 4.8e-05
EQsurf(g2) 1.1e-04 6.6e-05 6.6e-05 6.6e-05 6.6e-05
EQMC(g3) 1.7e-06

EdCATCH(g3) 2.3e-01 4.1e-05 1.6e-04 6.3e-05 8.1e-05
EQsurf(g3) 1.1e-01 4.0e-05 1.3e-06 1.7e-06 1.7e-06

Table 8: Relative integration errors for the three test functions (14)-(16) on the Franke’s surface discon-
nected region of Fig. 4, by means of QMC, dCATCH, Qsurf.

4 Software
We have implemented and tested in Matlab all the described routines.

The demos demo_CQMC_sphpoly, demo_CQMC_torus, demo_CQMC_franke illustrate the
numerical experiments performed in the previous section. Their structure is essentially similar
and can be modified to treat other subsets and/or parametric surfaces, adapting the function
pts_domain to the new instance. This corresponds to items (i) and (ii) of Algorithm Qsurf.

The routine cqmc_v2 implements its remaining items from (iii) to (vi). To this purpose,
the basis selection in (iii) is obtained by means of the function dCHEBVAND_v2, while the com-
putation of a sparse solution in (v5) is achieved by an user’s choice implementation of the
Lawson-Hanson algorithm (namely, the Matlab built-in function lsqnonneg or the alternative
open-source codes lawsonhanson and LHDM proposed respectively in [24] and [9]). Moreover,
having in mind to compare algorithm Qsurf with previous approaches, we also provide the
routine dCATCH from [11], which implements Caratheodory-like compression via NNLS.

The open source software is available at [15].
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Abstract

Procedure NDED computes the numerical derivatives of order ν from equispaced data.
This is based on the iterated application of a spectral algorithm for the computation of the
first order derivative. A preliminary test of the procedure gives satisfactory results.
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1 Introduction
A numerical differentiation problem consists in the computation of the derivative of order ν

of an unknown function from the knowledge of the values of the function at prescribed points.
Numerical differentiation is an interesting topic in many fields of applied sciences, such as
biology, chemistry and physics, and it has a fundamental role in numerical analysis [3], [5],
[21], [23]. For instance, operators approximating derivatives can be used to numerically solve
differential equations [12], [13]. Due to its central role in scientific computing, several nu-
merical differentiation methods are present in the scientific literature [4], [6], [7], [14], [15],
[22], [24], [25]. All the methods for numerical differentiation are generally classified into these
categories: finite difference methods, interpolation methods, regularization methods and inte-
gral methods. Finite difference methods and interpolation methods are well known and have
the advantage of simplicity, moreover, they are considered to give satisfactory results when the
function to be differentiated is given very precisely. Most of the regularization methods make
use of the variational approach. The derivative is written as the solution of a Volterra integral
equation and the resulting integral equation is reduced to a well-posed problem that depends
on a regularization parameter. The main issue with these methods is the determination of the
optimal parameter value that is generally a nontrivial task. Other interesting problems in the

⋆ Corresponding author: nadaniela.egidi@unicam.it 39

https://www.ojs.unito.it/index.php/JAS
https://orcid.org/0000\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 0003\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 4646\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 2836
https://orcid.org/0000\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 0001\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 7772\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 569X
https://orcid.org/0000\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 0002\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 7609\protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  You may provide a definition with\MessageBreak \protect \begingroup \immediate \write \@unused   \def \MessageBreak  
 \let \protect \edef  Your command was ignored.\MessageBreak Type  I <command> <return>  to replace it with another command,\MessageBreak or  <return>  to continue without it.  \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Can be used only in preamble.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup   \errhelp \let \def \MessageBreak  
                \def   \errmessage  LaTeX Error: Unicode character − (U+2212)\MessageBreak not set up for use with LaTeX.

See the LaTeX manual or LaTeX Companion for explanation.
Type  H <return>  for immediate help   \endgroup 0589
nadaniela.egidi@unicam.it


NDED

field of numerical differentiation are the differentiation of multivariate functions [2], [20] and
the numerical differentiation from scattered data [8].

The main difficulty in the numerical differentiation is that small errors in the function data
may cause large errors in the computed derivative, due to the unboundedness of the deriva-
tive operator. However, in practice, data are almost always corrupted by noise and in many
applications it is necessary to estimate the derivative from known noisy data. Thus, proper reg-
ularization schemes are usually considered by methods for numerical differentiation [1], [16],
[17], [18], [19], [26].

We present the procedure NDED for the numerical approximation of the derivatives of
order ν ≥ 1. This procedure is based on a recursive application of an algorithm to compute
first order derivatives from the Singular Value Expansion (SVE) of the derivative operator. In
the present version, the procedure is intended for equispaced univariate data but the structure
of the algorithm is easily generalizable to the cases of irregular grid spacing and multivariate
data. The procedure NDED has been implemented in MATLAB and the “code metadata” are

Current code version v. 1.0
Permanent link to repository https://github.com/josgiac/NumDer.git
Code versioning system used git
Software code languages MATLAB

In Section 2, we summarize the theoretical basis of the proposed algorithm. In Section
3, we give the algorithm and its implementation in MATLAB. In Section 4, we show some
numerical results. In Section 5, we provide conclusions and future developments.

2 Theoretical Background
The proposed algorithm is based on papers [9], [10] and [11], which we summarize in this
section, for the reader’s convenience.

We consider differentiable functions f : I →R defined on a closed interval I; without losing
generality, we can assume that I = [0,1]. The first derivative f (1) of f is the unique solution
w : I → R of ∫ 1

0
K(t,s)w(s)ds = f (t)− f (0), t ∈ [0,1], (1)

which is a Volterra integral equation of first kind having kernel, K : I × I → R,

K(t,s) =
{

1, 0 ≤ s < t ≤ 1,
0, 0 ≤ t ≤ s ≤ 1. (2)

We note that, with K defined as in (2), integral equation (1) is a direct consequence of the
Fundamental Theorem of Calculus, that is, for each t ∈ [0,1],∫ t

0
1 · f ′(s)ds = f (t)− f (0).

In compact notation, equation (1) becomes

K w = f − f0, (3)

where f0 = f (0) and K is the integral operator with kernel defined by (2). This integral
operator K associated with the first order derivatives has a known SVE given by the following
theorem.
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Theorem 1. The SVE of kernel (2) is

K(t,s) =
∞

∑
k=0

µkuk(t)vk(s), t,s ∈ I, (4)

where µk = 2
(2k+1)π , k = 0,1, . . . , are the singular values of K and the singular functions

corresponding to µk are

vk(s) =
√

2cos
(

s
µk

)
, s ∈ I, (5)

uk(t) =
√

2sin
(

t
µk

)
, t ∈ I. (6)

Proof. See [11] for a detailed proof.□
The SVE of K allows the definition of an FFT method to compute the numerical deriva-

tives of a given function starting from its values at prescribed points. Let n > 0 and h = 1/n,
supposing that we know the values of f at n+1 equispaced points

ξ j = jh, j = 0,1, . . . ,n, (7)

that is f j = f (ξ j) are known, then the following theorem gives such a method and the cor-
responding accuracy properties. This theorem considers the approximation of f ′(x j), j =
0,1, . . . ,n−1 where

x j =

(
j+

1
2

)
h. (8)

Moreover, the following notations are used: for j,k = 0,1, . . . ,n−1:

γk =
1
µk

, s̃ j,k = sin
(
γ jξk

)
(9)

c j,k = cos
(
γ jxk

)
, s j,k = sin

(
γ jxk

)
. (10)

Theorem 2. For k = 0,1, . . . ,n−1,

f ′(xk) = f p
k +O(h4), (11)

where

f p
k =

√
2

n−1

∑
j=0

f p
v, jc j,k, (12)

and for j = 0,1, . . . ,n−1,

f p
v, j = α0c j,0 +β j(27s j,0 − s j,1)+αnc j,n, (13)

α0 =

√
2

24
(2 f0 −5 f1 +4 f2 − f3), (14)

αn =

√
2

24
(− fn−3 +4 fn−2 −7 fn−1 +4 fn), (15)

β j =

√
2

24

(
2

n−1

∑
l=1

( fl − f0) s̃ j,l +(−1) j ( fn − f0)

)
. (16)
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Proof. See [10] for details.□
We note that (12) can be computed by the Discrete Fourier Transformation (DFT) of a vec-

tor that depends on f p
v, j, j = 0,1, . . . ,n− 1. Moreover, f p

v, j, j = 0,1, . . . ,n− 1, depend only on
the data fk, k = 0,1, . . . ,n, and (16) can be computed by the DFT. In particular, by using Theo-
rem 2 and the FFT algorithm, in [10] we give two algorithms FOD and NOD. Algorithm FOD
allows calculating the numerical derivative of order 1 by knowing the values of the function in
equally spaced points of a closed interval [a,b], while NOD computes the numerical derivative
of order ν ≥ 1 by using FOD iteratively.

In the next section, we propose a revised version of FOD algorithm, that in some cases
provides more accurate results than the original one.

3 The algorithm
We propose a new algorithm for numerical differentiation based on the following formulas.
The algorithm has been coded in MATLAB, the current code version (v. 1.0) is available at
https://github.com/josgiac/NumDer.git where the git code versioning system is used.

Let f : I → R be a sufficiently regular function, by following the proof of Theorem 3.2 in
[10], we can prove that, for k = 0,1, . . . ,n−1,

f ′(xk) = f̃ p
k +O(h4), (17)

where

f̃ p
k =

√
2

n−1

∑
l=0

f̃ p
v,lcl,k, (18)

and for j = 0,1, . . . ,n−1,

f̃ p
v, j = α̃0c j,0 +β j(27s j,0 − s j,1)+ α̃nc j,n, (19)

α̃0 =

√
2

1920
(311 f0 −1075 f1 +1510 f2 −1110 f3 +435 f4 −71 f5), (20)

α̃n =

√
2

1920
(471 fn −1235 fn−1 +1510 fn−2 −1110 fn−3 +

+435 fn−4 −71 fn−5), (21)

where we recall that β j, j = 0,1, . . . ,n−1, are given by (16). We consider the following more
general problem where the sampled function F is defined on a closed interval J not necessarily
equal to I, that is the domain of f . We suppose that ν ,n ∈ N, ν ≥ 1 and n ≥ ν + 2 and that
F : J → R, with J = [a,b] ⊂ R and a < b, is a sufficiently regular function on the closed
interval J of R. Let L = b−a, h = 1/n and m = n−ν +1, then for i = 1,2, . . . ,ν , we consider
the following points in J:

x(i)k = a+hL
(

k+
i
2

)
, k = 0,1, . . . ,n− i, (22)

ξ
(i)
j = a+hL

(
j+

i−1
2

)
, j = 0,1, . . . ,n− i+1. (23)

We note that x(1)k = a+ xkL for k = 0,1, . . . ,n−1 and ξ
(1)
j = a+ξ jL for j = 0,1, . . . ,n.
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Suppose that we know the values of F at the n+ 1 uniformly distributed points ξ
(1)
j , j =

0,1, . . . ,n, of J, the corresponding function data are f = ( f0, f1, . . . , fn) ∈ Rn+1, where

f j = F(a+ξ jL), j = 0,1, . . . ,n. (24)

We note that the vector of samples f may be considered as obtained from the function f (t) =
F((b− a)t + a)) defined for t ∈ I, moreover f ′(t) = (b− a)F ′((b− a)t + a)). The proposed
Algorithm 1, for k = 0,1, . . . ,m−1, computes the approximation D(ν)

k of F(ν)
(

x(ν)k

)
.

Algorithm 1 (ν-order derivative) NDED
(

a,b,n,ν , f ;D(ν)
)

Input: a,b ∈ R; n,ν ∈ N; f = ( f0, f1, . . . , fn) ∈ Rn+1.
Output: D(ν) = (D0,D1, . . . ,Dm−1) ∈ Rm, m = n−ν +1.

for l = 0, . . . ,n−1 do
Compute the quantity f̃ p

v,l by using formula (19)
end for
for k = 0, . . . ,n−1 do

Compute f̃ p
k by using formula (18)

Compute D(1)
k =

f̃ p
k

b−a
end for
for l = 2,3, . . . ,ν do

m = n− l +1;
Compute D(l) ∈ Rm by NDED

(
ξ
(l)
0 ,ξ

(l)
m ,m,1,D(l−1);D(l)

)
end for
return D(ν)

We note that the FFT algorithm is used for computing formulae (19) and (18).

3.1 MATLAB implementation
Algorithm 1 has been implemented in MATLAB, here we illustrate the corresponding function.

• Syntax. [d, ifail] = NumDerEquispacedData(a,b,nu, f )

• Purpose. Compute the derivatives of a function F starting from its values at uniformly
distributed points.

• Description. [d, ifail] = NumDerEquispacedData(a,b,nu, f ), given a vector f contain-
ing the n+1 values of function F at

ξ
(1)
k = a+ k

b−a
n

, k = 0,1, . . . ,n,

computes d = (d1,d2, . . . ,dm) the derivatives of order ν = nu of F at

x(nu)
k = a+

(
k+

nu
2

) b−a
n

, k = 0,1, . . . ,m−1, m = n−nu+1,

with Algorithm 1.
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• Parameters.

– input a,b - double scalar. The closed interval [a,b] is the domain of F . Constraints:
a < b.

– input nu - integer scalar. The value of nu is the order of the searched derivatives.
Constraints: nu ≥ 1.

– input f - double vector with n+1 components. f ( j+1) must contain the quantity
F (a+ j(b−a)/n), j = 0,1, . . . ,n. Constraints: n ≥ nu+2.

– output d - double vector with m = n− nu+ 1 components. d( j+ 1) contains the
approximation of

F(nu)
(

a+
(

j+
nu
2

) b−a
n

)
, j = 0,1, . . . ,m−1.

– output ifail – integer scalar, ifail = 0 unless the function detects an error (see Error
Indicators and Warnings).

• Error Indicators and Warnings. Here is the list of errors or warnings detected by the
function:

– ifail = 1 - on entry a ≥ b or nu ≤ 0.

– ifail = 2 - the method cannot be applied because n < nu+2.

4 Numerical results
The performance of the proposed algorithm is tested against the following three functions:

• F1(x) = 1
1+x2 , x ∈ [0,1],

• F2(x) = cos
(
(1+ x)2

)
, x ∈ [0,1],

• F3(x) = ex, x ∈ [−0.1,0.5].

We note that the first two functions are the same test functions chosen in [10] and are used for
the comparison of the two algorithm versions. Let

• f (ν)k be the ν-derivative of F at x(ν)k , k = 0,1, . . . ,n−ν ,

• f̂ (ν)k be a computed approximation of f (ν)k , k = 0,1, . . . ,n−ν ,

We consider the following performance indices:

e f =
∣∣∣ f (1)0 − f̂ (1)0

∣∣∣ , el =
∣∣∣ f (1)n−1 − f̂ (1)n−1

∣∣∣ , (25)

E∞ = max
0≤k≤n−ν

∣∣∣ f (ν)k − f̂ (ν)k

∣∣∣ , (26)

EI
∞ = max

1≤k≤n−ν−1

∣∣∣ f (ν)k − f̂ (ν)k

∣∣∣ , (27)

Er =

√√√√√√∑
n−ν

k=0

(
f (ν)k − f̂ (ν)k

)2

∑
n−ν

k=0

(
f (ν)k

)2 . (28)
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The numerical results related to algorithm NDED have been obtained by using the MATLAB
Script Test that uses NumDerEquispacedData.

The results of this test are reported in Tables 1-4 and Fig. 1. In particular, in Tables 1 and
2, we can see that, for both functions F1 and F2, the values of e f and el obtained by NDED
are significantly lower than those obtained with NOD. This shows that new formulae (19)-
(21) actually give an improved approximation at the extremes of the computation interval with
respect to the formula implemented in NOD, without changing the performance at the internal
points, indeed, the errors EI

∞ computed with NDED are the same of those computed with NOD.

Table 1: The comparison of the absolute errors e f and el for the first derivative of function F1
obtained with NOD and NDED, where x(z) denotes the real number x ·10z.

h
NOD NDED

e f el EI
∞ e f el EI

∞

4.00(−2) 6.18(−5) 9.92(−6) 1.20(−6) 1.90(−6) 1.27(−7) 1.20(−6)
2.00(−2) 7.93(−6) 1.12(−6) 7.53(−8) 7.04(−8) 4.50(−9) 7.53(−8)
1.00(−2) 9.98(−7) 1.32(−7) 4.71(−9) 2.29(−9) 1.45(−10) 4.71(−9)

Table 2: The comparison of the absolute errors e f and el for the first derivative of function F2
obtained with NOD and NDED, where x(z) denotes the real number x ·10z.

h
NOD NDED

e f el EI
∞ e f el EI

∞

4.00(−2) 1.33(−4) 7.66(−4) 1.07(−5) 7.38(−7) 1.20(−5) 1.07(−5)
2.00(−2) 1.54(−5) 9.92(−5) 6.69(−7) 7.32(−9) 5.23(−7) 6.69(−7)
1.00(−2) 1.84(−6) 1.26(−5) 4.18(−8) 1.93(−11) 1.87(−8) 4.18(−8)

Table 3 and Table 4 report the errors obtained by NDED, in particular, they show the errors
in the numerical derivatives of order ν ≥ 1 with h = 1/100, but similar behaviors are obtained
for a different choice of h. From these tables, we can see that the precision decreases as the
order of the derivative increases, which suggests that the algorithm needs a more in-depth study
to limit, as far as possible, this natural behavior.

Table 3: The errors obtained by computing with NDED the derivatives of order ν = 1,2,3 of
functions F1 and F2 with step h = 1/100, where x(z) denotes the real number x ·10z.

ν
F1 F2

E∞ Er E∞ Er
1 4.71(−9) 4.67(−9) 4.18(−8) 1.20(−8)
2 1.57(−7) 3.16(−8) 6.56(−7) 2.53(−8)
3 2.00(−5) 7.03(−7) 7.81(−5) 4.56(−7)
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Table 4: The errors obtained by computing with NDED the derivative of order ν of function F3
with step h = 1/100, where x(z) denotes the real number x ·10z.

ν 1 2 3 4 5
E∞ 8.71(−12) 1.77(−9) 2.69(−7) 4.19(−5) 6.80(−3)
Er 5.58(−12) 1.56(−10) 2.43(−8) 4.16(−6) 9.05(−4)

Finally, in Figure 1 we have the graph of F(2)
2

(
x(2)k

)
,k = 0,1, . . . ,n−2, its approximation

D(2)
k , k = 0,1, . . . ,n−2, and the corresponding error Ek =D(2)

k −F(2)
2

(
x(2)k

)
, k = 0,1, . . . ,n−2,

when the approximation is computed with NDED and h = 1/25. Figure 1 gives graphical
evidence of the accuracy of the derivative approximation obtained by NDED, even with few
data points.

Figure 1: On the left, the graph of the second derivative of F2 and its approximation computed
with NDED and h = 1/25. On the right, the corresponding error Ek = D(2)

k − F(2)
2

(
x(2)k

)
,

k = 0,1, . . . ,n−2.
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5 Conclusion
In the present paper, we described the procedure NDED for the numerical computation of
the derivative of order ν , starting from function data obtained at n+ 1 uniformly distributed
points on an interval [a,b]. This procedure is based on a recursive application of a numerical
method to compute the first order derivative with an error O(h4). The procedure NDED has
been implemented in MATLAB and the current code version is available on github. The current
code version (v. 1.0) of the NDED procedure gives satisfactory results for equispaced univariate
data. The next versions will be able to consider scattered function data and multivariate function
data.
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Abstract

In this paper, we analyze theoretical and implementation aspects of Time-Accurate and
highly-Stable Explicit Runge-Kutta (TASE-RK) methods, which have been recently intro-
duced by Bassenne et al. (2021) [5], for the numerical solution of stiff Initial Value Prob-
lems (IVPs). These methods are obtained by combining explicit RK schemes with suitable
matrix operators, called TASE operators, involving in their expression a matrix J related
to the Jacobian of the differential problem to be solved. By analyzing the formulation and
order conditions of TASE-RK methods, we show that they can be interpreted as particular
linearly implicit RK schemes, and that their consistency properties are independent of the
choice of J. Using this information, we propose a MATLAB implementation of TASE-RK
methods, which makes use of matrix factorizations and allows setting J according to user
preferences.

Keywords: RK methods, TASE preconditioners, TASE-RK methods, MATLAB code, stiff
problems (MSC2020: 65L04, 65L06, 65M06, 65Y99)

1 Introduction
In this manuscript, we focus on the numerical solution of IVPs of the form{

y′(t) = f (t,y(t)),
y(t0) =y0,

t ∈ [t0, te], f : R×Rd → Rd, (1)

characterized by severe stiffness, usually arising from the spatial semi-discretization of Partial
Differential Equations (PDEs) in several applications. Stiffness is a well-known characteristic
of differential equations, and several definitions have been given over the years to formalize
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this concept, see, e.g., [10, 11]. Roughly speaking, a system of differential equations is stiff
when an explicit numerical method is forced to use very small discretization steps in order to
furnish an accurate solution, thus becoming totally inefficient.

Research in the field of efficient methods for solving problems of this type has developed
a lot over the years, and still continues. Indeed, most of the models of differential equations
that derive from application in several contexts, e.g., corrosion [4, 15], biology [19], chemistry
[8, 7], physics [3, 6, 20, 21], are characterized by severe stiffness. The first methods that
have been proposed to deal with stiffness are the implicit ones, among which the most famous
are the fully implicit RK schemes (e.g. the Gauss-Legendre and RADAU formulas [11, 28,
29]). Fully implicit methods manage to be particularly stable with quite large values of the
discretization step. However, fully implicit RK methods are particularly expensive since they
require the solution of systems of non-linear equations (of the size of the problem times the
number of stages) at each time step, and this constitutes an obstacle especially for problems
of large dimensions, such as semi-discretized PDEs. For this reason, several implementation
procedures have been proposed in the scientific literature to optimize the efficiency of implicit
methods by reducing the number of required operations or the size of the underlying non-
linear system, see, e.g., [26]. To reduce the complexity of implicit methods, alternative RK
schemes have been formulated, such as DIRK (Diagonally Implicit RK) (see, e.g., [27] and
references therein contained), or IMEX (IMplicit EXplicit) (see, e.g. [14, 13] and references
therein contained). Furthermore, particularly efficient and stable methods for stiff problems
are the so-called linearly implicit RK schemes, which arise for example from a linearization of
DIRK. Such methods require the solution of a fixed number of linear systems at each step.

The most famous linearly implicit RK schemes are the Rosenbrock and W-methods, see,
e.g., [23, 25, 24, 34]. Moreover, recently Bassenne et al. [5] proposed a new class of RK meth-
ods, called TASE-RK methods. These numerical schemes have been subsequently improved
by Calvo et al. [12]. As pointed out in [5, Introduction], the idea of the former is based on the
fact that a user is not a-priori aware of the severity of the stiffness of a differential problem.
Thus, a convenient approach may be to always start using an explicit RK method, which is
very simple and fast to program. Then, if the numerical results are not good, to avoid using
another code and reprogramming a new method, the user can keep the one already applied by
pre-conditioning the problem to solve. In this way the stiffness of the problem is moderated and
therefore the probability that the explicit RK method works well increases. TASE-RK methods
are very interesting and promising, as shown by the large number of scientific articles that have
been produced based on them [2, 18, 17, 22, 30, 33, 36]. Some of these manuscripts show
that TASE operators are very efficient also when used with other classes of numerical schemes,
such as peer methods [1, 16, 18, 31, 32, 35].

In this manuscript, we focus on the implementation aspects of TASE-RK methods. In par-
ticular, by analyzing their formulation, we express them in such a way that their implementation
and also the study of the related properties of accuracy and stability simplify. Indeed, we revise
TASE-RK methods as linearly implicit numerical schemes, and compute an efficient solution
of the underlying linear systems. These systems involve matrices that depend on the Jacobian
J f = fy(t,y(t)) of the differential problem. However, since the consistency analysis shows that
the TASE-RK methods preserve their order regardless of the choice of these matrices, we pro-
pose an implementation that allows the user to fix them in a convenient way. Finally, we show
two examples of use of the proposed MATLAB code.

Summarizing, this paper is organized as follows: in Section 2 we recall the original TASE-
RK methods and formulate them as linearly implicit RK methods; in Section 3 we discuss the
related properties of accuracy and stability; in Section 4 we show and explain the improvement
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of TASE-RK methods performed by Calvo et al.; in Section 5 we propose and describe a
MATLAB function for implementing TASE-RK methods; in Section 6 we show an example
of use through two numerical tests concerning a system of Ordinary Differential Equations
(ODEs) and a semi-discretized PDE; finally, some conclusions are drawn in Section 7.

2 Formulation
Let us fix, from now on, the discrete grid {tn = t0 +nh;n = 0, . . . ,N; tN = te}, h > 0. The idea
of derivation of the TASE-RK methods arises from the following observations.

First, consider the implicit Euler method for solving the problem y′(t) = Jy(t), with J rep-
resenting a generic matrix of order d:

yn+1 = yn +hJyn+1. (2)

Note that the method (2) can be rewritten as (Id −hJ)yn+1 = yn, where Id indicates the Identity
matrix of order d. Assuming the matrix Id −hJ to be invertible, we get

yn+1 = (Id −hJ)−1yn ⇐⇒ yn+1 = yn +((Id −hJ)−1 − Id)yn.

Furthermore, using that

(Id −hJ)−1 − Id = (Id −hJ)−1[Id − (Id −hJ)] = (Id −hJ)−1hJ,

we can finally write

yn+1 = yn +hT1(hJ)Jyn, with T1(hJ) = (Id −hJ)−1. (3)

Note that the numerical scheme (3) corresponds to the explicit Euler method applied to the
problem y′(t) = T1(hJ)Jy(t). Therefore, solving

y′(t) = Jy(t), J ∈ Rd,d, (4)

with implicit Euler method is equivalent to solving

y′(t) = T1(hJ)Jy(t), T1 : Rd,d → Rd,d, T1(A) := (Id −A)−1 ∈ Rd,d, (5)

using explicit Euler, which in principle has bad stability properties. However, the precondition-
ing made to the vector field of the problem (4) by means of the matrix T1 definitely improves
the stability of explicit Euler method, since we get implicit Euler.

Using the above observations, Bassenne et al. have proposed a general setting for construct-
ing new RK schemes with s stages and order p = s suitable for stiff problems. The general
approach consists of the following two main steps.

First, the differential problem (1) is modified as follows:{
u′(t) =Tp(hJ f ) f (t,u(t)), Tp : Rd,d → Rd,d,

u(t0) =y0.
(6)

Here, Tp is a matrix operator which depends on the product between the step-size h and the Ja-
cobian J f = fy(t,y(t)) of the problem, where in J f for simplicity of notation we do not indicate
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the time dependence. The only property required for Tp is that it must be an approximation of
order p of the Identity. This means that

Tp(hJ f ) = Id +O(hp). (7)

Subsequently, the perturbed problem (6) is solved through an explicit RK method of order p.
Therefore, more conveniently, we can express the TASE-RK methods directly in the fol-

lowing way: 
Yn,i =yn +h

i−1

∑
j=1

ai jTp(hJn) f (tn + c jh,Yn, j), i = 1, . . . ,s,

yn+1 =yn +h
s

∑
j=1

b jTp(hJn) f (tn + c jh,Yn, j).

(8)

Here, Yn, j ≈ y(tn + c jh), yn ≈ y(tn), and A = (ai j), b = (b j), c = (c j) represent the coefficients
of the underlying explicit RK method. Note that, in the discrete setting, the exact Jacobian J f
is replaced by Jn = fy(tn,yn). Hence, TASE-RK methods require the Jacobian to be updated at
each integration time step.

The TASE operator Tp proposed by Bassenne et al. is a natural extension of the function T1
in Equation (5). In particular, adding in T1 the dependency on a real positive parameter α , the
TASE operator of order one reads

T1(α,hJ f ) = (Id −αhJ f )
−1, α > 0.

Using Richardson extrapolation, Bassenne et al. have then recursively defined a generic family
of TASE operators of order p, as follows:

Tp(α,hJ f ) =

 (Id −αhJ f )
−1, if p = 1,

2p−1

2p−1 −1
Tp−1(α/2,hJ f )−

1
2p−1 −1

Tp−1(α,hJ f ), if p ≥ 2.
(9)

The TASE operator Tp (9) can also be expressed as

Tp(α,hJ f ) =
p−1

∑
k=0

βp,k(2k −αhJ f )
−1, (10)

where the coefficients βp,k must be suitably fixed (see [5, Table 2]).
From the formulation (8), and from the expression of the TASE operator (10), it is clear

that TASE-RK methods are linearly implicit numerical schemes. In particular, these methods
require the Jacobian to be updated at each step, and the solution of p linear systems depending
on Jn for each stage Yn,i, i = 2, . . . ,s (since Yn,1 = yn, we do not take into account the first stage).
Furthermore, there are p extra linear systems concerning the computation of the advancing
solution. Thus, TASE-RK methods require the solution of sp linear systems at each step.

3 Consistency and stability analysis
In this section, we analyze the consistency and stability of TASE-RK methods.

We start by showing below that a TASE-RK scheme has the same order as the underlying
explicit RK method.
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Theorem 3.1. [5, 12] Let us consider an explicit RK method of order p, and assume that the
TASE operator Tp satisfies the property (7). Then, the corresponding TASE-RK method (8) is
consistent of order p.

This theorem is quite natural by observing that the exact solutions y(t), u(t), of the original
and perturbed problems (1), (6), respectively, satisfy ||y(t)−u(t)||= O(hp), thanks to property
(7). Using an explicit RK method of order p for the perturbed problem, we obtain that ||u(tn)−
un|| = O(hp), where un ≈ u(tn), for each n. With un we here denote the numerical solution
of the perturbed problem through the explicit RK method, i.e. the solution of the TASE-RK
method. Therefore, it holds that ||y(tn)−un||= O(hp), i.e. the TASE-RK method has order p.

Several interesting observations can be made starting from Theorem 3.1.
We first write the Taylor series expansion of the TASE operator Tp (9) proposed by Bassenne

et al. as follows:
Tp(α,hJ f ) = Id +Qp(hJ f )

p +O(hp+1).

By making simple calculations, it can be shown that Qp = α p/c, where c is a known positive
constant whose value depends on p.

Remark 3.1. The smaller |Qp| is, the more Tp approximates the Identity matrix in an accurate
way, and therefore the perturbed problem (6) gets closer to the initial one (1). Indeed, in the
manuscripts [5, 12] it is observed that the smaller |Qp| is, the lower the error provided by the
TASE-RK methods is.

Remark 3.2. In the manuscripts [5, 12], TASE-RK methods of order p = s(≤ 4) have been
derived. This choice allows to attain the maximum possible order using the minimum number
of stages and simplifies the study of linear stability, as discussed below.

Now, we analyze the stability properties of TASE-RK methods. It is known that the sta-
bility function of explicit s-stage RK methods with order p = s ≤ 4 is independent of their
coefficients. In particular, it can be expressed as follows:

R(z) = 1+ z+ · · ·+ 1
p!

zp.

Here, z = hλ , where λ is a complex parameter with Re(λ )< 0 associated with the classical test
equation y′(t) = λy(t). The stability function of TASE-RK methods can be easily derived from
it. Indeed, considering the perturbed problem y′(t) = Tp(α,hλ )λy(t), we get the following
stability function:

RTp(α,z) = 1+ zTp(α,z)+ · · ·+ 1
p!
(zTp(α,z))p. (11)

Note that for TASE-RK methods with order p = s the stability function is independent
of the coefficients of the underlying explicit RK scheme. The only parameter on which the
stability function depends is that of the TASE operator α . Therefore, adequately fixing the free
parameter α of Tp, using TASE technique it is possible to improve the stability properties of
any explicit RK method with order p = s ≤ 4.

Remark 3.3. Property (7) holds for the operator Tp (9) for any value of the parameter α and
matrix J f . Thus, according to Remark 3.1, the free parameter α can be set to minimize |Qp|, in
order to have a small error. Moreover, since the function RTp (11) depends on α , this parameter
can be determined in order to get A-stability (or at least A(θ)-stability) for the corresponding
TASE-RK method. See, e.g., [11, p. 230] for the stability definitions. Furthermore, we can
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choose a generic matrix other than Jn in the formulation of TASE-RK methods without altering
their order of consistency; however, good stability properties are preserved provided that Jn is
a suitable approximation of the Jacobian.

In the paper [5], Bassenne et al. have set, for the cases p = s = 2,3,4, the α parameter in
order to obtain a good balance between the minimum |Qp| value, and the best possible stability
properties for the corresponding TASE-RK method. The related results are reported in Table 1.

Table 1: Properties of TASE-RK methods in correspondence of the values of α proposed in the
manuscript [5].

p = s Stability properties |R(∞)| |Qp| α

2 A-stability 1 1.13 1.5
2 Strong A-stability 0.5 4.50 3
3 A(θ)-stability, θ = 89.31° 1 2.70 2.7858
4 A(θ)-stability, θ = 88.36° 1 13.14 5.3854

4 Improved TASE-RK methods
The TASE-RK methods have been improved by Calvo et al., who in the paper [12] proposed
the following generalization of the family (9):

Tp(ααα,hJ f ) =
p

∑
j=1

γ j(Id −α jhJ f )
−1,

γ j =
( 1

α j

)p−1
/∏

k ̸= j

( 1
α j

− 1
αk

)
, ααα = (α1, . . . ,αp) ∈ Rp.

(12)

Here, α j > 0 and α j ̸= αk for all j ̸= k. It can be easily shown that the TASE family (12)
generalizes the one given by Bassenne et al., which can be derived using α j = α/2 j−1, j =
1, . . . , p. By construction it holds that (see [12, Eqs. (6)-(7)])

Tp(ααα,hJ f ) = Id +Qp(hJ f )
p +O(hp+1) with Qp =

p

∏
j=1

α j.

The motivation that led Calvo et al. to this generalization is based on the fact that the
first family of TASE operators depends on a single free parameter α . As seen in the previous
section, α should be set to obtain the optimal balance between the minimum value of the error
constant |Qp| and the best stability of the corresponding TASE-RK method. However, the
results in Table 1 are not fully satisfactory, mainly because it is not possible to achieve strongly
A(θ)-stable or even L(θ)-stable methods for s = p = 3,4. For problems with high stiffness,
these properties are very important.

Thanks to this generalization, there are p (p > 1) free parameters α j to fix for stability and
accuracy reasons, and therefore more possibilities to improve TASE-RK methods. We note that
obviously for this generalization the stability function becomes

RTp(ααα,z) = 1+ zTp(ααα,z)+ · · ·+ 1
p!
(zTp(ααα,z))p.
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Furthermore, the computational cost of the TASE-RK methods (8) with the new Tp (12) remains
the same. Indeed, it is still required the solution of sp linear systems at each step depending on
Jn. In Table 2, we report the properties of the TASE-RK methods in correspondence of the α j
parameters of the operator Tp (12) proposed by Calvo et al. in the paper [12].

Table 2: Properties of TASE-RK methods in correspondence of the values of ααα proposed in the
manuscript [12].

p = s Stability properties |R(∞)| |Qp| ααα

2 Strong A-stability 0.5 4.50 (3,1.50)
3 L(θ)-stability, θ = 89.02° 0 6.88 (2.315,1.880,1.582)
4 Strong A(θ)-stability, θ = 87.34° 0.270 44.32 (3.940,2.451,2.227,2.061)

By comparing Tables 1, 2, it is clear that the error constant |Qp| is of the same order of
magnitude for both families of operators (9), (12), for p = 2,3,4. Also the angle of A(θ)-
stability is more or less similar for the versions proposed in the two tables. However, TASE-RK
methods with operator (12) have much better strong stability properties. Therefore, from now
on we refer directly to the operators proposed by Calvo et al. (12).

5 MATLAB code and computational effort
From the analysis made in the previous sections, it is clear that the consistency of the TASE-
RK methods is independent of the choice of Jn. Indeed, for TASE-RK methods, to get order
p, it suffices that the underlying explicit RK method has order p and property (7) holds (see
Theorem 3.1).

As observed in Remark 3.3, stability reasons require Jn to be a suitable approximation of
the Jacobian, obtained, for example, by fixing Jn as a constant matrix (thus avoiding updating
Jn at all points of the time grid). For this reason, we report below an implementation of TASE-
RK methods allowing the user to choose whether to update the Jacobian at each step, or fix it
as a constant matrix. Furthermore, with this implementation, methods can be applied with any
number of stages and with a TASE operator having a generic number of terms (therefore also for
p ̸= s). Finally, referring to formulation (8) of TASE-RK methods, we exploit the MATLAB lu
function for factorizing the coefficient matrices and then the command backslash for solving
the required linear systems by means of the forward/backward substitution. At the end of this
section, we also provide a brief analysis of the computational effort of TASE-RK methods with
and without exact Jacobian, showing that the choice of constant Jn allows to remarkably reduce
the number of required operations.

5.1 Function TASERK.m

Let us describe below the input and output arguments, together with the employed auxiliary
MATLAB functions, of the code TASERK.m, which allows to apply the TASE-RK methods pro-
posed by Calvo et al. [12] to a differential problem of the type (1) chosen by the user.

Input arguments

• N - integer scalar
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Number of (equally spaced) discrete time intervals into which the user decides to subdi-
vide the continuous grid [t0, te].

• tspan - double array
Row vector of length two containing the first and last grid points t0, te, respectively.

• y0 - double array
Column vector with the initial condition y0 ∈ Rd .

• Fun - function handle
Function which returns the vector field f , evaluated at (t,y), of the problem (1) that
the user wants to solve; t ∈ R, y ∈ Rd , constitute the input arguments of Fun, and the
column vector f (t,y) ∈ Rd is the output.

• Jac - function handle
Function which returns the Jacobian matrix of the problem (1) that the user wants to
solve, evaluated at a point (t,y), or a suitable fixed approximation of J f ; in the first
case, t ∈R, y ∈Rd , constitute the input arguments of Jac, and the matrix fy(t,y) ∈Rd,d

is the output.

• Method - integer array
Array with the TASE-RK methods to apply; in particular:

- 20 corresponds to the TASE-RK with s = p = 2, using the midpoint rule as under-
lying explicit RK;

- 30 corresponds to the TASE-RK with s = p = 3, using the Ralston’s method as
underlying explicit RK;

- 40 corresponds to the TASE-RK with s = p = 4, using the Kutta’s method as un-
derlying explicit RK.

For example, if we want to use methods 20 and 30, then Method=[20,30]. We will
later show an example where we apply all the TASE-RK methods using the same main
program.

• jacup - integer scalar
Parameter which is equal to 0 if the user wants to use constant Jn, 1 otherwise.

Output arguments

• yT - double array
Column vector of length d with the numerical solution computed by the chosen TASE-
RK method at last grid point te.

• y - double array
Matrix of size d × (N + 1) having in column n+ 1 the numerical solution yn computed
by the chosen TASE-RK method.

• t - double array
Row vector of length N+1 with all the discrete grid points {tn = t0+nh;n= 0, . . . ,N; tN =
te}.
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• CPUtime - double scalar
Total CPU time in seconds taken by the chosen TASE-RK method.

Auxiliary MATLAB functions

• backslash
Computes A−1B, where A and B are input matrices.

• cputime
Returns the current CPU time in seconds.

• eye
Returns the Identity matrix of required dimension.

• kron
Computes, in general, the Kronecker product of two matrices.

• length
Returns the length of a vector.

• linspace
Generates a row vector of linearly equally spaced points.

• lu
Computes the LU factorization of a matrix.

• ones
Generates a matrix of the required size with all elements equal to one.

• sum
Computes the sum by rows or columns of the elements of a matrix.

• zeros
Generates a matrix of the required size with all elements equal to zero.

Below, we report the MATLAB function TASERK.m.

Code 1: function TASERK.m.
1 function [yT,y,t,CPUtime] = TASERK(N,tspan,y0,Fun,Jac,Method,jacup)
2
3 % Fixing explicit RK tableau and TASE operator coefficients
4 switch Method
5 case 20 % 20−midpoint method of order s=p=2
6 s = 2; p = 2; alpha = [3 3/2];
7 A = [0 0;1/2 0]; c = [0 1/2]; b = [0 1];
8
9 case 30 % 30−Ralston method of order s=p=3
10 s = 3; p = 3; alpha = [2.31469 1.87961 1.58222];
11 A = [0 0 0;1/2 0 0;0 3/4 0];
12 c = [0 1/2 3/4]; b = [2/9 1/3 4/9];
13
14 case 40 % 40−Kutta method of order s=p=4
15 s = 4; p = 4; alpha = [3.939556 2.450558 2.227083 2.061235];
16 A = [0 0 0 0;1/2 0 0 0;0 1/2 0 0;0 0 1 0];
17 c = [0 1/2 1/2 1]; b = [1/6 1/3 1/3 1/6];
18 end
19
20 % Computation of gamma
21 alpham1 = 1./alpha; gamma = [];
22 for i = 1:p
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23 prod = 1;
24 for j = 1:p
25 if i ~= j
26 prod = prod*(alpham1(i)−alpham1(j));
27 end
28 end
29 gamma(i) = alpham1(i)^(p−1)/prod;
30 end
31
32 % Initialization
33 t = linspace(tspan(1),tspan(2),N+1); % t: discrete time grid
34 h = (tspan(2)−tspan(1))/N; % h: constant time step−size
35 d = length(y0); % d: dimension of the problem
36 Id = eye(d); % Id: Identity matrix of order d
37 n = 1; % n: index representing the current step
38 y = y0;
39
40 if (jacup == 0) % If we want a ’constant Jacobian’
41 C = cputime;
42 Jn = Jac();
43 for l = 1:p % Compute, outside the loop, the LU factorizations of Id−alpha(l)*(h*Jn)
44 [Ll(1:d,(l−1)*d+1:l*d),Ul(1:d,(l−1)*d+1:l*d)] = lu(Id−alpha(l)*(h*Jn));
45 end
46 for n = 2:N+1
47 Y = zeros(d,s); % Block matrix with stages in columns
48 Y(:,1) = y(:,n−1);
49 f = zeros(d,s); % Block matrix with h*fi in columns
50 F = zeros(d,s); % Block matrix with Tp*h*fi in columns
51 for i = 1:s−1 % Compute all the stages
52 f(:,i) = h*Fun(t(n−1)+h*c(i),Y(:,i));
53 for l = 1:p
54 F(:,i) = F(:,i) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f

(:,i)));
55 end
56 Y(:,i+1) = y(:,n−1) + sum(kron(A(i+1,:),ones(d,1)).*F,2);
57 end
58 f(:,s) = h*Fun(t(n−1)+h*c(s),Y(:,s));
59 for l = 1:p
60 F(:,s) = F(:,s) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f(:,s))

);
61 end
62 y(:,n) = y(:,n−1) + sum(kron(b,ones(d,1)).*F,2);
63 end
64 Cf = cputime;
65 elseif (jacup == 1) % If we want exact Jacobian
66 C = cputime;
67 for n = 2:N+1
68 Jn = Jac(t(n−1),y(:,n−1)); % Update Jn at each step
69 for l = 1:p % Compute, at each step, the LU factorizations of Id−alpha(l)*(h*Jn)
70 [Ll(1:d,(l−1)*d+1:l*d),Ul(1:d,(l−1)*d+1:l*d)] = lu(Id−alpha(l)*(h*Jn));
71 end
72 Y = zeros(d,s); % Block matrix with the stages in column
73 Y(:,1) = y(:,n−1);
74 f = zeros(d,s); % Block matrix with h*fi in column
75 F = zeros(d,s); % Block matrix with Tp*h*fi in column
76 for i = 1:s−1 % Compute all the stages
77 f(:,i) = h*Fun(t(n−1)+h*c(i),Y(:,i));
78 for l = 1:p
79 F(:,i) = F(:,i) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f

(:,i)));
80 end
81 Y(:,i+1) = y(:,n−1) + sum(kron(A(i+1,:),ones(d,1)).*F,2);
82 end
83 f(:,s) = h*Fun(t(n−1)+h*c(s),Y(:,s));
84 for l = 1:p
85 F(:,s) = F(:,s) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f(:,s))

);
86 end
87 y(:,n) = y(:,n−1) + sum(kron(b,ones(d,1)).*F,2);
88 end
89 Cf = cputime;
90 end
91
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92 CPUtime = Cf − C;
93 yT = y(:,end);
94 end

5.2 Description of the code
Let us describe the lines of code of the function TASERK.m.

• From line 3 to line 18: we select the TASE-RK methods chosen by the user; method 20
corresponds to the case s = p = 2, using the midpoint rule as underlying explicit RK;
method 30 corresponds to the case s = p = 3, using the Ralston’s method as underlying
explicit RK; method 40 corresponds to the case s = p = 4, using the Kutta’s method as
underlying explicit RK.

• From line 20 to line 30: we compute the values of γ j, storing them in a vector gamma,
starting from the alpha (ααα) vector according to Equation (12).

• From line 32 to line 38: we define the time grid t, the step-size h, the Identity matrix Id
of size d (i.e. the size of the problem); we also initialize the time step n, the matrix y,
which, at the end, will contain the numerical solution (in the columns) at all the discrete
points, and the CPU time C.

• From line 40 to line 64: if jacup= 0, i.e. we want to fix Jn avoiding updating it at
each step, we first call the function Jac.m, which returns in this case a suitable constant
approximation of Jn; then we apply the TASE-RK method as described below.

• From line 43 to line 45: using the lu command, we compute the LU factorizations of the
matrices Id −α jhJn, j = 1, . . . , p, whose summed inverses define the TASE operator Tp
according to Equation (12); we allocate all the lower and upper triangular matrices L and
U of size d thus obtained in successive blocks of the matrices Ll and Ul, respectively,
which have dimension d × (pd); note that the matrices Ll and Ul are only computed
here, and are not updated within the method being Id −α jhJn, j = 1, . . . , p, constants.

• From line 46 to line 64: we compute the numerical solution at all grid points using the
TASE-RK method; we explain below the operations performed here.

– From line 47 to line 50: we define the matrix Y which, at the end of the current step,
will contain all the stages Yn, j, j = 1, . . . ,s, in columns; the matrix f which, at the
end of the current step, will contain all the function evaluations h f (tn + c jh,Yn, j),
j = 1, . . . ,s, in columns; the matrix F which, at the end of the current step, will
contain the products between Tp and h f (tn + c jh,Yn, j), j = 1, . . . ,s, in columns.

– From line 51 to line 61: we compute all the stages storing them in Y; note that the
products between Tp and h f (tn + c jh,Yn, j) are calculated by solving linear systems
of the form Ãx = b̃ by means of the backslash command, with Ã = Id −α jhJn, b̃ =
h f (tn+c jh,Yn, j), through the LU factorizations of the coefficient matrices stored in
the arrays Ll and Ul.

– Line 62: we compute the solution yn−1, which we store in the n-th column of the
matrix y; the index n is shifted by one with respect to n as the initial condition y0 is
stored in the first column of y (in MATLAB, array indexes start at 1).
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• From line 65 to line 90: if jacup= 1, we update Jn and therefore the LU factorizations of
the matrices Id −α jhJn, j = 1, . . . , p, at each step; in this case, the function Jac.m returns
the exact Jacobian of the problem evaluated at the desired grid point; note that, of course,
lines 72–89 correspond to lines 47–64 (in fact, the only change with respect to the case
jacup= 0 is due to the fact that Jn and the matrix factorizations must be updated at each
step and therefore appear inside the loop).

• From line 92 to line 94: we compute the total CPU time employed by the method and
store in the vector yT the numerical solution at the final point of the grid.

Note that, of course, setting Jn constant, the number of operations required by the method
drops drastically. In fact, for:

• jacup= 0, we have to compute only p LU factorizations, then using them in the solution
of sp linear systems per step; thus, at the end we have p LU factorizations plus N(sp)
linear systems;

• jacup= 1, we have to compute p LU factorizations per step, using them in the solution
of sp linear systems; thus, at the end we have N p LU factorizations plus N(sp) linear
systems.

Obviously, we underline that the cost of solving a linear system with already factorized matrix
is considerably reduced. In particular, given d the size of the problem, an LU factorization costs
O(d3/3), and solving a linear system with an already factorized matrix costs O(d2). Therefore,
the approach we propose in the code is especially convenient for problems of big dimensions,
and when a large number N of time grid points (i.e. small h) is required.

6 Examples of application
We report below two examples of application of the code TASERK.m. The first is quite simple
and concerns a system of ODEs. The second concerns the numerical solution of the famous
Burgers’ PDE.

6.1 Euler’s problem
In this subsection, we show the application of the function TASERK.m in solving the well known
Euler’s problem, given by the following system of coupled ODEs:

dy1

dt
=−2y2y3,

dy2

dt
=

5
4

y1y3,

dy3

dt
=− 1

2
y1y2,

t ∈ [t0, te]. (13)

This model is related to the rotational motion of solid bodies. We take t0 = 0, te = 10, and
y0 = (1,0,0.9). Easily, note that

J f =


0 −2y3 −2y2

5
4

y3 0
5
4

y1

−1
2

y2
−1
2

y1 0

 . (14)
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Since we can use a fixed approximation of the Jacobian to lower the computational cost
of TASE-RK methods preserving their order of consistency, if jacup= 0 we impose that the
function Jac returns the matrix J f evaluated at the initial point (t0,y0). Then, in this case we
evaluate the Jacobian only at the initial grid point, without updating it during the integration.

We report and describe below the main code, which we have called exampleEuler.m. In
line 2 we define the function Fun, which corresponds to funEuler.m. In line 3 we choose the
TASE-RK methods to use; we apply in this case the method with p = s = 4. From line 5 to line
10, we choose the jacup parameter and fix the function Jac according to its value. From line
13 to line 16, we set the time grid, the initial conditions and the number N of discrete intervals.
From line 19 to line 21 we also compute a reference solution by means of the MATLAB ode15s
function. In line 23 we apply the selected TASE-RK method to the Euler’s model. Finally, we
print the error at the final time grid point and the employed CPU time.

Code 2: main code exampleEuler.m.
1 %% Main code: exampleEuler.m
2 Fun = @funEuler;
3 Tmethod = [40]; % Select the TASE−RK method
4 nTmethods = length(Tmethod);
5 jacup = 0; % We want ’constant Jacobian’
6 if (jacup == 0)
7 Jac = @jacEulerfix;
8 elseif (jacup == 1)
9 Jac = @jacEuler;
10 end
11
12 % Initial conditions
13 global y0
14 tspan = [0 10];
15 y0 = [1;0;0.9];
16 N = 5000; % Number of grid intervals
17
18 % Compute a reference solution with ode15s
19 options = odeset(’RelTol’,5e−14,’AbsTol’,5e−14);
20 [tode15s,yode15s] = ode15s(@funEuler,tspan,y0,options);
21 YrefT = yode15s(end,:)’;
22
23 [yTTRK,yTRK,t,CPUtimeTRK] = TASERK(N,tspan,y0,Fun,Jac,Tmethod,jacup);
24
25 % Print results
26 format short e
27 errT_TRK = norm(yTTRK−YrefT,inf) % Error
28 CPUtimeTRK % CPU time

We also report the functions funEuler.m, jacEulerfix.m, jacEuler.m, respectively,
which are recalled in the main algorithm. Obviously, funEuler.m returns the (column) vec-
tor field f given in Equation (13) evaluated at a point (t,y). Furthermore, jacEulerfix.m
returns the Jacobian (14) evaluated at the initial grid point. Finally, jacEuler.m returns the
exact Jacobian (14) evaluated at a point (t,y).

Code 3: function funEuler.m.
1 function yp = funEuler(t,y)
2
3 yp(1) = −2*y(2)*y(3);
4 yp(2) = 5/4*y(3)*y(1);
5 yp(3) = −1/2*y(1)*y(2);
6 yp = [yp(1);yp(2);yp(3)];
7
8 end

Code 4: function jacEulerfix.m.
1 function J = jacEulerfix()
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2
3 global y0
4 J = [0 −2*y0(3) −2*y0(2);
5 5/4*y0(3) 0 5/4*y0(1);
6 −1/2*y0(2) −1/2*y0(1) 0];
7
8 end

Code 5: function jacEuler.m.
1 function J = jacEuler(t,y)
2
3 J = [0 −2*y(3) −2*y(2);
4 5/4*y(3) 0 5/4*y(1);
5 −1/2*y(2) −1/2*y(1) 0];
6
7 end

To conclude this subsection, we also report the outputs obtained.

Code 6: outputs of the main code exampleEuler.m.
1 >> exampleEuler
2 errT_TRK =
3 3.3776e−08
4 CPUtimeTRK =
5 6.4062e−01

6.2 Burgers’ equation
In this subsection, we show the application of the function TASERK.m in solving the Burgers’
equation [6, 9], which can be expressed as follows:

∂u
∂ t

= ε
∂ 2u
∂x2 −u

∂u
∂x

, (x, t) ∈ [x0,X ]× [t0, te]. (15)

The function u represents the speed of the fluid at the considered spatial (x) and temporal (t)
coordinates, ε is related to a constant physical property of the fluid, generally the viscosity or
something similar to it. When the diffusion term is absent, this PDE becomes the inviscid Burg-
ers’ equation. Furthermore, Equation (15) can also be expressed in the following conservative
form:

∂u
∂ t

= ε
∂ 2u
∂x2 − 1

2
∂u2

∂x
, (x, t) ∈ [x0,X ]× [t0, te]. (16)

Here, we consider the numerical solution of Equation (16). Regarding the initial conditions,
the spatial semi-discretization and the boundary conditions we mainly refer to [12, Section 3.2].
In particular, we consider as initial conditions the function

y(x,0) =

{
1, x ∈ [0,π],
0, x ∈ (π,2π].

Regarding the spatial semi-discretization of the equation, we take centred finite differences of
order four for both the first and second order spatial derivatives. Then, by fixing the uniform
spatial grid {xn = x0+m∆x;m = 0, ...,M;xM = X}, the semi-discretized Burgers’ equation (16)
reads

y′(t) = εL1y(t)− 1
2

L2y(t)2. (17)
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By calling with (d−2,d−1,d,d1,d2) the significant entries of the sub-, main-, and over-diagonals,
L1 and L2 are the following pentadiagonal Toeplitz matrices:

L1 =
1

12∆x2 (−1,16,−30,16,−1), L2 =
1

12∆x
(1,−8,0,8,−1).

The Jacobian is in this case given by the non-constant matrix

J f = εL1 −L2Y (t). (18)

Here, Y (t) is a square matrix of size M, having in each column the vector y(t). For semi-
discretized PDEs of this form, the diffusion part is mainly responsible for the stiffness of the
problem. Thus, in our code, since we can use a fixed approximation of the Jacobian to lower the
computational cost while maintaining order of TASE-RK methods, if jacup= 0 the function
Jac returns the constant matrix εL1.

We report and describe below the main code, which we have called exampleBurgers.m.
Note that, unlike the Euler’s problem, we now apply all the schemes reported in Table 2. Fur-
thermore, we perform the numerical integration using several values of N; in particular we use
N = 28,29, . . . ,212 time grid points, as can be seen from line 11. From line 13 to line 25, we
set the parameters, initial conditions and spatial semi-discretization of Burgers’ equation. In
the example, we have used ε = 1/10, M = 32 spatial grid points, t0 = x0 = 0, X = 2π , te = 4.
From line 28 to line 30 we also compute, like before, a reference solution by means of the
MATLAB ode15s function. From line 32 to line 46 we apply the selected TASE-RK methods
to the chosen problem, and store the obtained results in the matrices errT_TRK, CPUtime_TRK,
pest_TRK. In particular, the first two matrices contain in column i the absolute errors (at the
last time grid point) and CPU times, respectively, of the TASE-RK method with p = s = i+1.
Each row corresponds to a different value of N. The first row corresponds to the case N = 28,
the last to N = 212. The matrix pest_TRK is constructed in the same way and contains the
estimated order of the methods. However, it has one row less since it is not possible to estimate
the order for the first value of N.

Code 7: main code exampleBurgers.m.
1 %% Main code: exampleBurgers.m
2 Fun = @funBurgers;
3 Tmethod = [20 30 40]; % Select the TASE−RK methods
4 nTmethods = length(Tmethod);
5 jacup = 0; % We want ’constant Jacobian’
6 if (jacup == 0)
7 Jac = @jacBurgersfix;
8 elseif (jacup == 1)
9 Jac = @jacBurgers;
10 end
11 inN = 8; finN = 12; % We do the time integration using 2^(inN),...,2^(finN) time grid points
12
13 global epsilon M L1 L2
14 epsilon = 1/10; M = 32; % Spatial grid points
15 xspan = [0 2*pi]; tspan = [0 4];
16 Deltax = (xspan(2)−xspan(1))/M; % Spatial step−size
17
18 % Initial conditions
19 y0 = []; y0(1:M/2,1) = ones(M/2,1); y0(M/2+1:M,1) = zeros(M/2,1);
20
21 % Space−discetization: order−four FD and periodic BC
22 e = ones(M,1); r = 1/(12*Deltax^2);
23 L1 = spdiags([−r*e 16*r*e −30*r*e 16*r*e −r*e], −2:2, M, M); L1(1,M−1) = −r; L1(M−1,1) = −r;

L1(M,2) = −r; L1(2,M) = −r; L1(1,end) = 16*r; L1(end,1) = 16*r;
24 r = 1/(12*Deltax);
25 L2 = spdiags([r*e −8*r*e 0*r*e 8*r*e −r*e], −2:2, M, M); L2(1,M−1) = r; L2(M−1,1) = −r; L2(M

,2) = −r; L2(2,M) = r; L2(1,end) = −8*r; L2(end,1) = 8*r;
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26
27 % Compute a reference solution with ode15s
28 options = odeset(’RelTol’,5e−14,’AbsTol’,5e−14);
29 [tode15s,yode15s] = ode15s(@funBurgers,tspan,y0,options);
30 YrefT = yode15s(end,:)’;
31
32 for nm = 1:nTmethods % We apply all the selected TASE−RK
33 i = 1;
34 for N = 2.^(inN:finN) % For the simulations done
35 [yTTRK,yTRK,t,CPUtimeTRK] = TASERK(N,tspan,y0,Fun,Jac,Tmethod(nm),jacup);
36 errT_TRK(i,nm) = norm(yTTRK−YrefT,inf); % Error
37 cd_TRK(i,nm) = −log10(errT_TRK(i,nm));
38 CPUtime_TRK(i,nm) = CPUtimeTRK; % CPU time
39 i = i + 1;
40 end
41
42 l = length(cd_TRK(:,nm));
43 for i = 2:l % Compute the estimated order
44 pest_TRK(i−1,nm) = (cd_TRK(i,nm)−cd_TRK(i−1,nm))/log10(2);
45 end
46 end
47
48 % Print results
49 format short e
50 errT_TRK
51 CPUtime_TRK
52 format short
53 pest_TRK

We also report below the function funBurgers.m, which obviously returns the vector
field of the semi-discretized Burgers’ equation (17). Furthermore, we report the functions
jacBurgersfix.m, jacBurgers.m. The latter computes the exact Jacobian, given in Equa-
tion (18). The first returns only the diffusion part.

Code 8: function funBurgers.m.
1 function yp = funBurgers(t,y)
2
3 global epsilon L1 L2
4 yp = epsilon*L1*y − (1/2)*L2*(y.^2);
5
6 end

Code 9: function jacBurgersfix.m.
1 function J = jacBurgersfix()
2
3 global epsilon L1
4 J = epsilon*L1;
5
6 end

Code 10: function jacBurgers.m.
1 function J = jacBurgers(t,y)
2
3 global epsilon L1 L2 M
4 J = epsilon*L1−L2.*repmat(y,1,M)’;
5
6 end

Finally, we report below the outputs obtained by running exampleBurgers.m. Note that,
although we used jacup= 0, the methods maintain their order, as expected from the consistency
analysis done in the paper. This can be seen by looking at the columns of the matrices errT_TRK
and pest_TRK. Indeed, we recall that the first column corresponds to the TASE-RK of order
p = s = 2, the second to the method of order p = s = 3 and the third to the scheme with
p = s = 4. Looking at the matrix with the CPU times, it is evident that the more the number of
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grid points N increases and the more the number of stages is high, the greater the computational
effort.

Code 11: outputs of the main code exampleBurgers.m.
1 >> exampleBurgers
2 errT_TRK =
3 3.2141e−04 2.5591e−05 8.8510e−06
4 8.9912e−05 3.9132e−06 9.0181e−07
5 2.3923e−05 5.4871e−07 7.5195e−08
6 6.1825e−06 7.2968e−08 5.5087e−09
7 1.5724e−06 9.4195e−09 3.7483e−10
8 CPUtime_TRK =
9 3.1250e−02 4.6875e−02 6.2500e−02
10 4.6875e−02 1.0938e−01 1.2500e−01
11 1.4062e−01 1.5625e−01 2.6562e−01
12 2.3438e−01 2.9688e−01 5.0000e−01
13 3.4375e−01 6.5625e−01 9.8438e−01
14 pest_TRK =
15 1.8378 2.7092 3.2949
16 1.9101 2.8342 3.5841
17 1.9521 2.9107 3.7708
18 1.9752 2.9535 3.8774

7 Conclusions
In this manuscript, we have analyzed in detail the consistency and stability properties of the
recently introduced TASE-RK methods. Taking advantage of this analysis, we have proposed a
MATLAB implementation of these methods allowing the user to make a flexible choice of the
approximation of Jn to be used. Furthermore, by formulating TASE-RK schemes as linearly
implicit methods, we have employed some MATLAB functions to efficiently solve the under-
lying linear systems, by computing a-priori the LU factorizations of the matrices involved. The
proposed implementation is not limited to the cases of TASE-RK methods with p = s ≤ 4, but
can allow the user to test methods with a higher number of stages and such that p ̸= s.

We were motivated by the growing interest in TASE-RK methods, which are quite promis-
ing in solving large stiff problems, especially coming from the spatial semi-discretization of
PDEs. The results reported on the Euler’s problem and Burgers’ equation testify the correct-
ness of the theoretical analysis and the functioning of the proposed MATLAB code.
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Abstract

This paper deals with the construction of a coupled Gaussian rule for weight functions
involving powers, exponentials and trigonometric functions. Starting from a recursive rela-
tion for the moments, nodes and weights are computed by using the Chebyshev algorithm
together with the Golub and Welsch method. An a posteriori approximation of the quadra-
ture error by means of the generalized averaged Gaussian rules is also considered. Several
numerical examples are provided.

Keywords: Gaussian quadrature, Fourier type integral, averaged Gaussian rule (MSC2020:
65D32, 33C45)

1 Introduction
This work deals with the computation of

J(g) =
∫ +∞

0
g(x)xα−1e−βx cos(ωx)dx, α > 0, β > 0, ω > 0, (1)

where g is a smooth function. The above integral can be also interpreted as the cosine transform
(see [16]) of the function g(x)xα−1e−βx and it is typically referred to as a Fourier type integral,
with a broad range of applications in signal processing. More specifically, integrals of type
(1) arise for instance in geophysical electromagnetic survey (see e.g. [15]). In particular, the
electromagnetic fields induced by an infinite line of electric current placed above the earth
surface can be expressed as in (1), in which the function g encodes the reflection and refraction
of the electromagnetic waves and depends on the properties of the subsoil structure. Such kind
of source is used to simulate a long grounded wire or one side of a large rectangular loop.
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Numerical quadrature for integrals involving oscillating functions

By using the simple change of variable ωx= t, we reformulate the problem in the evaluation
of integrals of type

I( f ) =
∫ +∞

0
f (t)tα−1e−ct cos t dt= ω

αJ(g), (2)

with c = β

ω
, f (t) = g

( t
ω

)
. In this way the frequency is inherited by the scale factor c. Working

with formulation (2), in this paper we construct a coupled Gaussian rule, by first considering
the positive weight function

w(t) = tα−1e−ct (cos t +1) , (3)

and, then, by rewriting integral (2) as

I( f ) =IC( f )− IL( f ),

with
IC( f ) =

∫ +∞

0
f (t)tα−1e−ct (cos t +1)dt, (4)

and
IL( f ) =

∫ +∞

0
f (t)tα−1e−ctdt =

1
cα

∫ +∞

0
f
(y

c

)
yα−1e−ydy. (5)

We notice that the integral IL( f ) can be accurately computed by using the generalized Gauss-
Laguerre formula, that we denote by IL

n ( f ). Therefore, we focus on the construction of a
Gaussian quadrature rule with respect to the weight function (3). Having at disposal such a
formula, denoted by IC

n ( f ), we then consider the approximation

I( f ) =
(

IC
n ( f )− IL

n ( f )
)
+En( f ), (6)

where En( f ) is the quadrature error.
In this setting, since we do not have at disposal the explicit expression of the orthogonal

polynomials πk, k ≥ 0, relative to w(t) as in (3), we need to employ a numerical scheme to
compute the coefficients of the three-term recursion

πk+1(t) = (t −αk)πk(t)−βkπk−1(t), k ≥ 0,
π−1(t) = 0, π0(t) = 1,

with βk > 0. This can be done by evaluating the associated moments

µk =
∫ +∞

0
tkw(t)dt, k ≥ 0, (7)

and then by using the Chebyshev algorithm [4, sect. 2.3]. The coefficients αk,βk, k ≥ 0, define
the tridiagonal symmetric Jacobi matrix, whose eigenvalue decomposition provides abscissas
and weights of the quadrature rule. This final step is efficiently implemented by the famous
Golub and Welsch algorithm [7].

In order to approximate the quadrature error, we consider the corresponding generalized
averaged Gaussian rules (see [14, 12, 13, 3]). These formulas provide an a posteriori estimate
of the error. Moreover, they are easy to construct and typically lead to quite accurate approxi-
mations (see [12]).

We point out that all the results presented in the paper can be easily extended to the case of
integrals as in (1), with the cosine replaced by the sine function (see also Remark 2).
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The Matlab codes for the computation of integrals of type (2) by using the approximation
(6) are available at https://github.com/EleonoraDe/Fourier-type-integrals.

The paper is organized as follows. In Section 2 we derive a recursive relation for the evalua-
tion of the moments and show how to construct the coupled Gaussian formula. Some numerical
experiments, in which we compare the rule with other methods, are provided in Section 3. In
Section 4 we employ the generalized averaged Gaussian formulas to obtain an a posteriori
estimate of the quadrature error. Concluding remarks can be found in Section 5.

2 Construction of the Gaussian formula
In order to develop the Gaussian quadrature rule, relative to the weight function (3), first of all
we need to compute the moments

µk =
∫ +∞

0
tα+k−1e−ct (cos t +1)dt, k ≥ 0. (8)

Proposition 1. The following recursion holds

µ0 =
Γ(α)

cα
(cos(αϕ)(cosϕ)α +1) ,

µk =
k−1+α

c
cos((k+α)ϕ)(cosϕ)k+α +1

cos((k−1+α)ϕ)(cosϕ)k−1+α +1
µk−1, k ≥ 1,

(9)

with ϕ = arctan 1
c and where Γ is the Gamma function.

Proof. First of all, from [8, p.490, 3.944, n.6], for the so called core moments (see [6, sect.
2.1]), defined by

µk,0 =
∫ +∞

0
tα+k−1e−ct cos t dt, k ≥ 0, (10)

we have that

µk,0 =
Γ(k+α)

(1+ c2)
k+α

2
cos((k+α)ϕ), k ≥ 0, ϕ = arctan

1
c
.

Then, by definitions (8)-(10) and by using [8, sect. 3.381, n.4], for the moments µk, k ≥ 0, we
have

µk = µk,0 +
∫ +∞

0
tα+k−1e−ctdt

= Γ(k+α)

(
cos((k+α)ϕ)

(1+ c2)
k+α

2
+

1
ck+α

)

= Γ(k+α)
cos((k+α)ϕ)ck+α +(1+ c2)

k+α

2

(c(1+ c2))
k+α

2
(11)

Defining, for simplicity of notation,

dk :=
cos((k+α)ϕ)ck+α +(1+ c2)

k+α

2

(c(1+ c2))
k+α

2
, k ≥ 0,
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Figure 1: Comparison between formula (9) (dashed line) and formula (11) (solid line) for the
computation of the first 80 moments, with α = 0.7 and c = 0.1. The plots show the relative
errors with respect to a reference value computed by employing formula (9) with extended
precision arithmetic (50 digits).

so that µk = Γ(k+α)dk, after some computations, we have that

dk

dk−1
=

1
c

cos((k+α)ϕ)(cosϕ)k+α +1
cos((k−1+α)ϕ)(cosϕ)k−1+α +1

.

By using the above relation and formula (11), we obtain the result.

We notice that (11) gives an explicit expression for the computation of the moments µk,
k ≥ 0. Anyway, this formula involves the evaluation of the Gamma function and, from our
numerical experiments, for growing k it seems a little less stable than the recursive relation (9)
(see Figure 1).

Remark 2. A similar result can be derived also in the case the cosine in (2) is replaced by the
sine function. In this situation, for the moments

µ̃k =
∫ +∞

0
tα+k−1e−ct (sin t +1) dt, k ≥ 0,

it holds

µ̃0 =
Γ(α)

cα
(sin(αϕ)(cosϕ)α +1) ,

µ̃k =
k−1+α

c
sin((k+α)ϕ)(cosϕ)k+α +1

sin((k−1+α)ϕ)(cosϕ)k−1+α +1
µk−1, k ≥ 1,

with ϕ = arctan 1
c (see [8, p.490, 3.944, n.5]).

At this point, for the computation of the coefficients αk and βk of the recurrence relation

πk+1(t) = (t −αk)πk(t)−βkπk−1(t), k ≥ 0,
π−1(t) = 0, π0(t) = 1,
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with βk > 0, we employ the Chebyshev algorithm (see [4, sect. 2.3] and [5]). Given the first 2n
moments µ0, . . . ,µ2n−1, this algorithm uniquely determines the first n recurrence coefficients
αk and βk, k = 0, . . . ,n−1, by using the mixed moments defined as

σkl =
∫

∞

0
πk(t)t lw(t)dt, k, l ≥−1.

The Chebyshev algorithm is summarized in Algorithm 3.

Algorithm 3. Initialization

α0 =
µ1

µ0
, β0 = µ0,

σ−1,l = 0, l = 1,2, . . . ,2n−2,
σ0,l = µl, 0,1, . . . ,2n−1,

for k = 1,2, . . . ,n−1

for l = k,k+1, . . . ,2n− k−1

σk,l = σk−1,l+1 −αk−1σk−1,l −βk−1σk−2,l,

αk =
σk,k+1

σk,k
−

σk−1,k

σk−1,k−1
, βk =

σk,k

σk−1,k−1
.

After the computation of αk,βk, k = 0, . . . ,n−1, the eigendecomposition of the correspond-
ing Jacobi matrix

Jn =


α0

√
β1 0√

β1 α1
√

β2√
β2 α2

. . .
. . . . . .

√
βn−1

0
√

βn−1 αn−1

 ∈ Rn×n, (12)

provides the nodes t(n)i and weights w(n)
i , i = 1, . . . ,n, of the n-point Gaussian rule (see [1]).

Then, for the computation of integral (4) we use the approximation

IC( f ) = IC
n ( f )+EC

n ( f ) =
n

∑
i=1

w(n)
i f

(
t(n)i

)
+EC

n ( f ). (13)

As for integral (5), denoting by λ
(n)
i , ξ

(n)
i , i = 1, . . . ,n, the nodes and weights of the n-point

generalized Gauss-Laguerre rule, we consider the approximation

IL( f ) = IL
n ( f )+EL

n ( f ) =
1

cα

n

∑
i=1

ξ
(n)
i f

(
λ
(n)
i
c

)
+EL

n ( f ). (14)

In (13) and (14) EC
n ( f ) and EL

n ( f ) denote the corresponding quadrature errors. Finally, for
integral (2) we obtain the rule (6), in which En( f ) = EC

n ( f )− EL
n ( f ), that we call coupled

Gaussian formula.
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3 Numerical experiments
In this section we provide some numerical examples in which we test the performances of the
developed coupled Gaussian rule. We start by observing that, by using the change of variable
x = ct in (2), which leads to

I( f ) = Ic(h) =
1

cα

∫ +∞

0
h(x)xα−1e−xdx, h(x) = f

(x
c

)
cos
(x

c

)
,

and by considering as weight function

wGL(x) = xα−1e−x,

integral (2) can be evaluated by employing the n-point generalized Gauss-Laguerre formula,
that is,

IGL
n (h) =

1
cα

n

∑
i=1

h
(

λ
(n)
i

)
ξ
(n)
i , (15)

so that I( f ) = IGL
n ( f )+EGL

n (h), where EGL
n (h) denotes the quadrature error. As for the com-

putation of the nodes and weights of the generalized Gauss-Laguerre rule, we have used the
Matlab routine lagpts.m of the Chebfun package (see. [2]) In this view, in Figures 2-3-4 we
compare the behavior of the coupled Gaussian rule (6) with (15), with respect to a reference
solution. In other words, as a first set of experiments we compare formula (6) with the Laguerre
rule in which the oscillating term is not part of the weight function. Different sets of parameters
and functions f are considered. All the computations are carried out in Matlab by using ex-
tended precision arithmetic. Indeed, it is known that the computation of the coefficients αk,βk
is a severely ill-conditioned problem, even for k not too large (see e.g. [5]).

We remark that formula (6) requires a double set of points and therefore a double number
of function evaluations. Nevertheless, by looking at the figures, we observe that this formula
is typically more accurate than the generalized Gauss-Laguerre formula, especially for small
values of the parameter c (see Figures 2a-3-4a). Recalling that c = β

ω
in (2), this parameter

handles the scale and, therefore, the frequency of oscillations (cf. (1)-(2)). For large c method
(6) is less effective since the Laguerre rule appears to be reliable for slow oscillations (see
Figures 2b-4b).

As already mentioned in the Introduction, integral (1) can be interpreted as the cosine trans-
form

I(F,ω) =
∫ +∞

0
F(x)cos(ωx)dx, (16)

with F(x) = g(x)xα−1e−βx. An efficient method for the computation of (16) where the function
F is slowly decaying is based on the use of the double exponential transformation (see [10, 9])

x =
MΦ

(
t − π

2M

)
ω

, M > 0, Φ(ζ ) =
ζ

1− e−2π sinhζ
,

that leads to

I(F,ω) =
M
ω

∫ +∞

−∞

F

(
MΦ

(
t − π

2M

)
ω

)
cos
(

MΦ

(
t − π

2M

))
Φ

′
(

t − π

2M

)
dt.

E. Denich, P. Novati 76



Numerical quadrature for integrals involving oscillating functions

0 50 100 150 200 250 300

number of function evaluations

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(a)

coupled Gaussian

Laguerre

0 50 100 150 200 250 300
10

-20

10
-15

10
-10

10
-5

10
0

(b)

Figure 2: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 1.1, c = 0.2 (left) and α = 0.5,
c = 0.4 (right). In both cases f (t) = 1

1+e−t .
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Figure 3: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 1.5, c = 0.05 (left) and α = 1.3,
c = 0.1 (right). In both cases f (t) = 1

1+t .
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Figure 4: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 0.5, c = 0.2 (left) and α = 1.3,
c = 0.7 (right). In both cases f (t) = e−0.5t2

.

The idea was then to consider the trapezoidal rule with step τ and suitable truncation. By
setting Mτ = π as in [11], the method reads

IN(F) =
π

ω

N

∑
n=−N

F

(
MΦ

((
n− 1

2

)
π

M

)
ω

)
cos
(

MΦ

((
n− 1

2

)
π

M

))
×Φ

′
((

n− 1
2

)
π

M

)
.

(17)

This rule can be very efficient but requires the proper selection of τ (M) and N. This corre-
sponds to locate the significant support of the function with respect to the required accuracy
and to define a suitable discretization. As for the sine transform

I(F,ω) =
∫ +∞

0
F(x)sin(ωx)dx,

the method is almost identical with the only difference in the initial substitution, that now reads

x =
MΦ(t)

ω
.

Assuming ω = 1 and taking F(x) = f (x)xα−1e−cx, we have I(F,ω) = I( f ) (cf. (2)-(16)). In
this setting, in Figures 5-6-7 we report some results, where we compare our coupled Gaussian
method with the trapezoidal rule for different sets of parameters. In all pictures we consider
the results of the trapezoidal rule for M = 4,8,12, . . . in order to reduce the step, and then N =
M
2 ,M, 3

2M to work with increasing number of points, that is, by reducing the truncation errors.
As for the coupled Gaussian approach, we truncate rules (13)-(14) by neglecting the terms for
which the values of the weights w(n)

i , λ
(n)
i , i = 1, . . . ,n, are less than 1e− 16. Depending on

the function f and on the parameters, the trapezoidal rule appears to be extremely sensitive
with respect to the choice of N. For small N it shows a very fast initial convergence but also
stagnation, while for larger N the attainable accuracy is higher, but the method is slower (see
Figure 5). Basically, the Gaussian approach appears preferable for α , c and f such that the
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Figure 5: Comparison between the absolute error obtained by using the coupled Gaussian rule
(6) and the trapezoidal rule based on the double exponential transform (17) for α = 1.3, c = 0.7
(left) and α = 1.3, c = 0.3 (right). In both cases f (t) = e−0.5t2

.

support is relatively large (Figures 5-6a), whereas the trapezoidal rule is more effective for
functions rapidly decaying (Figure 6b and other experiments non reported). Figure 7 shows
a situation in which both methods are not much accurate because of the high frequency of
oscillations.

4 A posteriori error estimate
In this section, we construct the generalized averaged Gaussian rules AC

2n+1, AL
2n+1 (see [14]),

associated with the Gaussian formulas IC
n , IL

n , respectively, and employ them to approximate
the quadrature error

En( f ) = I( f )−
(

IC
n ( f )− IL

n ( f )
)
. (18)

The generalized averaged Gaussian formula A2n+1, associated with a generic Gaussian rule
In is given by (see [12])

A2n+1( f ) =
bn+1

bn +bn+1
In( f )+

bn

bn +bn+1
Ãn+1( f ),

where the quadrature formula

Ãn+1( f ) =
n+1

∑
i=1

σ
(n+1)
i f

(
τ
(n+1)
i

)
(19)

arises from the symmetric tridiagonal matrix J̃n+1 ∈ R(n+1)×(n+1), defined as

J̃n+1 =

[
Jn en

√
bn +bn+1

eT
n
√

bn +bn+1 an

]
, (20)

in which en = (0, . . . ,0,1)T ∈ Rn, Jn is as in (12) and ak,bk, k ≥ 0, are the coefficients of the
corresponding three-term recurrence relation of the orthogonal system {pk}k≥0 associated with
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Figure 6: Comparison between the absolute error obtained by using the coupled Gaussian rule
(6) and the trapezoidal rule based on the double exponential transform (17) for α = 0.5, c = 0.4
(left) and α = 0.5, c = 0.1 (right). In both cases f (t) = 1

1+e−t .

0 50 100 150

number of function evaluations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a)

0 50 100 150
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b)

Figure 7: Comparison between the absolute error obtained by using the developed Gaussian
rule (6) and the trapezoidal rule based on the double exponential transform (17) for α = 1.3,
c = 0.05 (left) and α = 0.5, c = 0.1 (right). In both cases f (t) = 1

1+t2 .
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In, that is,

pk+1(t) = (t −ak)pk(t)−bk pk−1(t), k ≥ 0,
p−1(t) = 0, p0(t) = 1.

By construction, formula (19) has the following properties (see [14]):

1. σ
(n+1)
i > 0, i = 1, . . . ,n+1;

2. the nodes τ
(n+1)
i are all real and are interlaced by those of In;

3. τ
(n+1)
i ∈ [0,+∞), for i ≥ 2;

4. τ
(n+1)
1 ∈ [0,∞) if and only if

pn+1(0)
pn−1(0)

≥ bn+1, n ≥ 1. (21)

Let AC
2n+1 and AL

2n+1 be the generalized averaged Gaussian rules corresponding to IC
n and IL

n ,
respectively. In this way error (18) is finally estimated as

En( f )≈
(

AC
2n+1( f )−AL

2n+1( f )
)
−
(

IC
n ( f )− IL

n ( f )
)
. (22)

In Figures 8-9 we show the reliability of the above estimate on some examples. For the
Gauss-Laguerre rule IL

n , the expressions of the corresponding orthogonal polynomials and the
values of the recurrence coefficients are explicitly known. Indeed, it has been verified that (21)
holds true if and only if α ≥ 2 (see [13]). As for the Gaussian formula IC

n , since we do not have
at disposal an analytical expression of the corresponding orthogonal polynomials and of the
recurrence coefficients, relation (21) can only be verified numerically. The experiments show
that it is not always true. Nevertheless, we remark that, even if in some cases for the rules ÃC

n+1,
ÃL

n+1 condition (21) does not hold, experimentally (for the functions considered) the resulting
formulas appear to provide fairly good approximations of the quadrature error.

5 Conclusion
In this work we have considered the construction of a coupled Gaussian formula for weight
functions involving powers, exponentials and oscillating functions. We have compared this
new approach with the Laguerre rule and a particular double exponential trapezoidal formula.
The results show that in some situations the developed rule improves the other two methods. A
practical error estimate, based on the use of the generalized averaged Gaussian rule, has been
presented and tested with good results.

Acknowledgments
This work was partially supported by GNCS-INdAM and FRA-University of Trieste. The au-
thors are member of the INdAM research group GNCS. Eleonora Denich thanks the University
of Trieste for the support, under grant "Programma Regionale (PR) FSE+ 2021/2027 della
Regione Autonoma Friuli Venezia Giulia - PPO 2023 - Programma specifico 22/23 - Avviso
emanato con decreto n.17895/GRFVG dd.19.04.2023 s.m.i., Linea C) Sportello 2023".

E. Denich, P. Novati 81



Numerical quadrature for integrals involving oscillating functions

0 20 40 60 80 100
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a)

error

estimate

0 20 40 60 80 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b)

Figure 8: The absolute values of the error En( f ) and its estimate (22) with α = 0.7, c = 0.5
(left) and α = 1.3, c = 0.3. In both cases f (t) = 1

1+t2 .
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Figure 9: The absolute values of the error En( f ) and its estimate (22) with α = 0.5, c = 0.4
(left) and α = 1.1, c = 0.2. In both cases f (t) = 1

1+e−t .
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