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Abstract

In this paper we consider a mean-field optimal control problem with selective action
of the control, where the constraint is a continuity equation involving a non-local term and
diffusion. First order optimality conditions are formally derived in a general framework,
accounting for boundary conditions. Hence, the optimality system is used to construct a re-
duced gradient method, where we introduce a novel algorithm for the numerical realization
of the forward and the backward equations, based on exponential integrators. We illustrate
extensive numerical experiments on different control problems for collective motion in the
context of opinion formation, pedestrian dynamics, and mass transfer.

Keywords: mean-field control, multi-agent systems, PDE-constrained optimization, expo-
nential integrators (MSC2020: 65M22, 49M41, 93A16)

1 Introduction

The study of collective motion of interacting agents systems is of paramount importance to
understand the formation of coherent global behaviors at various scales, with applications to
the study of biological, social, and economic phenomena. In recent years, there has been a
surge of literature on the collective behavior of multi-agent systems, covering a wide range

of topics such as cell aggregation and motility, coordinated animal motion [28, 30], opinion
formation [36, 45, 55], coordinated human behavior [9, 27, 31, 48], and cooperative robots [26,
, 46, 47]. These fields are vast and constantly evolving and we refer to the surveys [0, 29, 39]

that provide a comprehensive overview of recent developments. Modeling such complex and
diverse systems poses a significant challenge, since in general there are no first-principles as,
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for instance, in classical physics, or statistical mechanics. Nevertheless, the dynamics of the
individuals have been successfully described by systems of Ordinary Differential Equations
(ODEs) from Newton’s laws designing basic interaction rules, such as attraction, repulsion, and
alignments, or, alternatively, by considering an evolutive game where the dynamics is driven

by the simultaneous optimization of costs by N players such as in References [42, 43]. In this
context, of paramount importance for several applications is the design of centralized policies
able to optimally enforce a desired state of the agents, see for instance References [10, 7, 23].

In this paper, we consider a constrained setting, where interacting individuals are influenced
by a centralized control with selective action, i.e.,

1 N
dx; = (ﬁ Z p(xixj)(xj —x;) +s(t,x,-,pN)u,-> dt + odW/, (1)
j=1

with initial data x° = [x(l), .. ,xjov]. Here, each agent x; € Q C R4, for i = 1,...,N, accounts

for pairwise interactions weighted by the function p(-,-), and for disturbances modelled with
a Brownian motion dWl-t . The action of the control u = [uy,...,un|, u; € R, is weighted by a
selective function s(z,x;, p"), with p"(x) the empirical measures associated to the interacting
agent system, i.e., p/V(t,x) = N"'Y¥ | §(x;(t) —x). Then, the optimal control is obtained by
minimizing the cost functional

J(u;xo) =K

T 1 A N 2
| 55 X (@) i) | @
i=1

where £(¢,x;, fV) is a running cost to be designed by the controller, with a quadratic penalization
of the control for y > 0.

For a large number of agents, we can write the mean-field optimal control problem cor-
responding to the finite dimensional optimal control problem (1)—(2) as follows (see Refer-
ences [5, 33, 32])

T
minl/ /(E(t,x,p)+}/|u|2)pdxdt. (3a)
2Jo Ja

uclU

Here, U is the space of admissible controls and p is the density function satisfying the Partial
Differential Equation (PDE)

2
9P+ V- ((2(p) +s(t.x,p)u) p) — T-8p =0, )

P(0,x) = po(x)-

The non-local interactions among agents are described by the integral term

2(p)(1.9 = [ pley)—0)p(ry)dy @

and po(x) is the initial distribution of the agents. Differently from mean-field games [1, 22, 43],
in this context the goal is to compute a mean-field optimal strategy capable of driving the pop-
ulation density to a specific target, avoiding the curse of dimensionality induced by the large
scale non-linear system of N agents. However, the numerical solution of the PDE-constrained
optimization problem (3a)—(3b) requires careful treatment, see Reference [15]. In mean-field
optimal control problems, various methodologies have been utilized to tackle the synthesis of
high-dimensional systems, as seen in References [2, 24, 32, 49]. In this study, we adopt a
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reduced gradient method strategy where the first order optimality system is solved iteratively
for the realization of the control, as in References [8, 12]. Major challenges arise from the
presence of the stiff diffusive and transport operators, and from the stability and storage re-
quirements originated by the choice of the numerical solvers. For these kinds of problems,
explicit time marching schemes usually require several time steps due to the lack of favorable
stability properties, while implicit ones need possibly expensive solutions of non-linear systems
(see References [ 11, 37], where implicit multistep or Runge—Kutta methods are employed) or
linear systems (see Reference [40], where IMEX methods are proposed). A prominent and
effective alternative way to numerically integrate stiff equations in time is to employ explicit
exponential integrators, see Reference [41] for a seminal review. After semidiscretization in
space, these schemes require to approximate the action of exponential and of exponential-like
matrix functions (the so-called @-functions), in contrast to the solution of (non-)linear systems.

The paper is structured as follows. In Section 2 we present a model of interest which
generalizes the one in formulas (3), and we derive the formal optimality conditions using the
associated Lagrangian function, obtaining a system of coupled PDEs. The first one is forward
in time for the density function, while the second is backward in time for the adjoint variable.
We numerically couple these equations using the steepest descent algorithm. In Section 3 we
present the semidiscretization in space of the forward and of the backward PDEs, together
with the numerical solution of the arising systems of ODEs using a pair of exponential inte-
grators. For convenience of the reader, we also present there the derivation of the schemes
and a brief discussion on common techniques to compute the involved matrix functions. Sec-
tion 4 is devoted to some numerical validations and simulations in opinion formation (Sznajd,
Hegselmann—Krause, and mass transfer) and pedestrian (see Reference [16]) models. We fi-
nally draw some conclusions in Section 5.

2 Mean-field selective optimal control problem

We consider the mean-field optimal control problem [8, 16, 33] defined by the functional min-
imization
. Do), 5
min 7 (u; po) (5a)
where p = p(t,x) € R is a probability density of agents satisfying
( o2
dp +V-[(Z(p)+s(t,x,p)u)p] = —-Ap =0,
p(0,x) = po(x), (5b)

Bp onIFE,
0 only,

2

((ﬁ(m +s(t,xp)u)p — %Vp) 7= {
\
and defined for each (¢,x) € [0,T] x Q. The evolution of the density is driven by the non-local
operator Z(p)(t,x) € R?, as in equation (4), and by the control u = u(t,x) € R¢ weighted
by the selective function s(¢,x,p) € R. Here, we denoted by I'r the subset of the boundary
in which there is a flux different from zero (8 # 0) and by I'; the part of JQ with zero-flux
boundary conditions. These two subsets are such that 'rUT'z, = dQ and g NIz = 0, and 7 is
the outward normal vector to the boundary with norm equal to one. Finally, the functional in
formula (5a) is given by

I (u;p0) :%/()T/Q(e(t,x,p)-l-}/|u|2p) dxdt-l—%/gc(T,x,p(T,x))dx
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for a general running cost e(z,x,p) € R and a terminal cost ¢(7,x,p(T,x)) € R.

2.1 First order optimality conditions

We can derive the first order optimality conditions on a formal level using a Lagrangian ap-
proach. For a rigorous treatment we refer to References [8, 17]. We define the Lagrangian
function with adjoint variable y as

L(u,p,v) :%/OT/Q(e(t,x,p)+y|u|2p)dxdt—|—%/QC(T,X,p(T,x))dx
T o2 (6)
[/ w(a,pw-[(@(pws(z,x,p)u)pl—;Ap)dxdr.

The optimal solution (u*, p*, y*) can be found by equating to zero the partial Fréchet deriva-
tives of the Lagrangian function, i.e., by solving the following system

Dug(uava) =0,
Dlllg(uapvl//) =0, (7)
ng(uupvlll) =0

Before computing the partial derivatives in system (7), we integrate by parts the last term ap-
pearing in the Lagrangian function (6) and we get

1T 1
Llup.w) = [ [ (eltxp)+vlulp) dxdr+ 5 [ o(T.xp(T.x))dx
2Jo Ja 2Ja
T o2
+A‘Lp(&w+3ﬂw+@?wrmﬁwmmrvw)ﬂm
—/ / P (—Vt//-ﬁ+[3w> dbdt
0 Jre 2
- [ W(T2p(T.0)~ w(0.x)p(0.1))dx
where we used the value of the boundary conditions appearing in equation (5b). Performing

then the computations of the partial derivatives we obtain the gradient direction for the control
variable u

D, (u,p, ) = yu+s(t,x,p)Vy, 3)
the forward PDE for the density function p
( 62
dp +V-[(Z(p) +s(t,x,p)u)p] ~ —-Ap =0,
p(0,x) = po(x), 9)

Bp onIF,
0 only,

(2(p) +s(t,xp))p — SVp ) ii=
( o) - {

\
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and the backward PDE for the adjoint variable y
( 62
— oY = S AY+ (P(p) + (s(1,%,p) + pDps(t,x,p)Ju) - Vyr
1
+2(p, ) + 5 (Dpe(t, x, p) + 7luf*),
y(T,x) = yr(x),

) =By onI¥,
o only,

(10)

Vy i

(
o2
2

where

2(p,w)(13) = [ () (x—3)- Vy(r.)p(r.3)dy

and yr(x) = %DPC(T,x,p(T,x)). Now, in order to solve model (5), we employ a steepest
descent approach (see References [8, 12]). Starting with an initial control u°, at each iteration ¢
we insert u’ into the forward equation (9) and solve it for p = p/*!. We then insert u’ and p*+!
into the backward equation (10) and solve it for y = l[/”l. We finally update the control by
using the gradient direction (8), i.e.,

ME—H _ u€ _ /lé(}/ug—f—s(t,x,p”l)Vl//H)

and get u’T!. We proceed iterating until I (L/H) has stabilized within a given tolerance. For
the numerical solution of equations (9) and (10) we use the method of lines: we first discretize
in space and then use appropriate integrators for the obtained systems of ODEs.

3 Numerical integrators for the semidiscretized equations

In this section, we explain how to solve the forward and the backward PDEs in the steepest
descent algorithm. By observing that both are semilinear parabolic equations, the idea is to
use numerical schemes tailored for this type of problems. A prominent way is to apply explicit
exponential integrators [41] to the systems of ODEs arising from the semidiscretization in
space of the PDEs. By construction, these schemes solve exactly linear ODEs systems with
constant coefficients and they allow for time steps usually much larger than those required by
classical explicit methods, i.e., typically they do not suffer from a CFL restriction. On the
other hand, this class of integrators requires the computation of the action of exponential-like
matrix functions for which different efficient techniques have been developed in recent years
(see Section 3.3).
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3.1 Forward PDE

For the sake of clarity, and since we will present later on one-dimensional numerical examples,
we consider Q = [a,b] and we rewrite the forward PDE (9)
( 2

ap(t,x) = %%P(t,x) = ((Z(p(t,))(t,x) +5(t,2,p(1,%))u(t,x))p(1,)),

p(0,x) = po(x),

2
(200 (19) (1) +5(02p ()P 0.5) - G 0p (1)) | =Bl

a

2
Q@mm»mw+mmmmemmmm—%@mMo

= Bop(2,0),

b

where f3;, B, € R can be selected so that it is possible to express both zero and nonzero fluxes.
Notice that when we solve this equation we consider u(f,x) a given function. We introduce a
semidiscretization in space by finite differences on a grid of points x;, withi=1,...,n, in such a
way that p(t) = [p1(t),...,pa(t)]" is the unknown vector whose components p;(¢) approximate
p(t,x;). Now, by denoting D and D, the matrices which discretize d, and dy, at the grid points,
respectively, and P the discretization of the linear integral operator & by a quadrature formula,
the linear part of the right hand side of the equation is discretized by

o2

7D2p(t)>

while the non-linear part becomes

— (D1Pp(1))p (1) — (PP (1)) (D1p(1))
— (D1s(t,p(1)))u(t)p(t) —s(t,p (1)) (Dru(t))p (1) — s(1,p (1)) u(t)(D1p(2))-
Now, we also discretize the boundary conditions with finite differences by using virtual nodes,

and we modify accordingly both the linear part and the non-linear one. The resulting non-linear
system of ODEs is then

/(1) =Arp (1) +¢(0.p(0)), 1 (0.7) -
p(0) = py.
Given a time discretization [tg,...,%,...,ty], with 7o = 0 and #,, = T, the exact solution of

system (11) at time #;,; can be expressed using the variation-of-constants formula, i.e.,

Tk
P (ti1) =e™Fp () + /0 el % Mg (1 +5,p (1 +5))ds,

where Ty = t;11 —t;, for k =0,...,m — 1. In order to obtain an explicit first order numerical
scheme, we denote by p, the approximation of p(#;) and approximate the non-linear function

8r(tx +s5,p(tx +5)) with gr(t, p;). Hence, we have

A % (—s)A
P(tis1) = Piyy = €™ FPH‘/O el %A ge (11, py)ds
T
—e™irp, + </ e(TkS)AFdS) 8r(tk: Pi)
0

1
=e™rp, + (Tk/ erk(l_e)AFd9> 8 (tx, Py)

0

_ eTkAFpk + T @y (TkAF)gF(lh pk)

(12)

G. Albi, M. Caliari, E. Calzola, F. Cassini 48



JAS Exponential integrators for a mean-field selective optimal control problem

Here, we introduced the exponential-like function

1
01 (X) :/ e(lfe)xde,
0

with X € C"*" a generic matrix. This scheme is known as exponential Euler, it is an explicit
method of first (stiff) order and it is A-stable by construction. Although its implementation does
not need the solution of (non-)linear systems, at each time step it is required the evaluation of
a linear combination of type e*Xv; + 7, (X )wy, where v, w; € C" are suitable vectors,
which we will address in Section 3.3.

3.1.1 Selective function independent of the density

A remarkable occurrence in the literature is s(z,x, p(¢,x)) = s(¢,x), i.e., the selective function
does not depend on the density (see Reference [&] for the case s(¢,x) = 1, which we will also
consider in the numerical examples). In this case, the linear part of the forward equation has
time dependent coefficients

o2
(702 — (Dys(0))u(t) — s(6)(Dyu(r)) — s<r>u<r>Dl) p(),
while the non-linear part is now given by

—(D1Pp(1))p(1) — (Pp(1))(D1p(1)).

By modifying accordingly the quantities to impose the boundary conditions, and using again
the previous notation for simplicity, we end up with the system of ODEs

(13)

p'(1) =Ap(1)p(r) +gr(t,p(t), t€10,T],
p(0) = p,.

At each 1, we can rewrite equivalently this system as

p'(1) = Ap(tx)p (t) + (Ap(t) — Ap(t))p (1) + gr(t, p(1))
=Ap(1)p (1) + gr(t,p (1)),
p(0)=p,

and apply the exponential Euler method, as done for system (11). Thus, we end up with the
scheme

Pltci1) = Pryr = % Wp, + 101 (TAR (1)) 85 (15, Py

T AR(1) (14)
=" p, + 1.0 (TAF (1)) 8F (tk: Pr)»

for k =0,...,m— 1. As for the general case s(¢,x,p(f,x)), we obtain in this way an explicit
method of first order (which we call exponential Euler—Magnus) that requires again to evaluate
a linear combination of actions of the matrix exponential and the matrix ¢; function.
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3.2 Backward PDE
We rewrite the backward PDE (10) in the one-dimensional case Q = [a, D]

( 2
=0y (1.3) = %0y (1,0) + P (p(1.) (1,0 Ay (1)

+ (s(t,x,p(t,x)) + p(t,x)sp(t,x,p(t,x)))u(t,x) o y(t,x)
F2(p(0), e, ) (1.0) + 5 (ep(txp0:0) + 1 (1,0),

¥(T,x) = yr(x),
2

T (t,x)], = —Buy(t.)

2
G_axlll(tux)}h = _ﬁbll/(tvb)a

\

where s, (t,x,p(t,x)) = Dps(t,x,p(t,x)) and e (¢,x,p(t,x)) = Dpe(t,x,p(t,x)). Here, we as-
sume that p(,x) and u(z,x) are given functions. By applying a finite difference discretization
on the same spatial grid as above and defining Q the discretization of the linear integral opera-
tor 2, we obtain the time dependent coefficient linear part

2
(%Dz +PP(1)D1 + (s(1,p (1) + P (1)sp(t, p(1))u(r) D1 + Qp(r)Dl) v(r)
and the source term .
Sep(t.p(0)+ ().

Finally, by taking into consideration boundary conditions, we end up with the inhomogeneous
time dependent coefficient linear system of ODEs

V() =As(W() +8a(0). 1€ [0.7) "
v(T)=yy.
By considering the same time discretization [fo,...,fi1,...,4,] as above, system (15) has a

similar structure to system (13). Hence, taking into account that we are marching backward in
time, we apply the exponential Euler—-Magnus method and we obtain the time marching

V() ~ y, = ey, 4 1o (TAR (fh 1)) 85 (fri1)s (16)

fork=m—1,m—2,...,0.

3.3 Matrix functions evaluation

We have introduced two exponential integrators that require the evaluation of
e™ v+ 101 (TX)W, (17)

at each time step, where 7 > 0, X € R"*", and v,w € R". We stress that these quantities depend
in general on the current time step, but for simplicity of notation we dropped the subscripts.
If we choose a uniform time discretization, i.e., T, = 7, in the exponential Euler scheme (12)
we can compute once and for all the matrices e™F and ¢;(7TAr) and then multiply by the
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corresponding vectors. In this case, for the matrix function approximations the most common
techniques are Taylor expansions or Padé rational approximations with scaling and squaring
(see, for instance, References [3, 21, 52, 53]). This approach is computationally attractive only
for matrices of moderate size, taking into account also that the resulting matrix functions are
full even if the original ones were sparse. When employing the exponential Euler—-Magnus
schemes (14) and (16), we can still pursue this approach. However, since here the matrices
change at each time step, we need to recompute the matrix functions every time accordingly. It
is also possible to compute linear combination (17) by using a single slightly augmented matrix
function evaluation. In fact, thanks to [50, Proposition 2.1], we have that the first n rows of

o (eloo B[}

coincide with vector (17). This is an attractive choice in a variable step size scenario, in which
both the forward and the backward equations could be solved by a single matrix function eval-
uation at each time step.

When X is a large sized and sparse matrix, it may be convenient to compute directly vec-
tor (17) at each time step without explicitly computing the matrix exponential. State-of-the-art
techniques follow this approach and are based on Krylov methods or direct interpolation poly-
nomial methods (see, for instance, References [4, 19, 35, 44]).

4 Numerical experiments

We present in this section several numerical examples arising from different choices of param-
eters and functions in the continuous model (5). In particular, we consider numerical exper-
iments for two different classes of multi-agent systems in opinion formation and pedestrian
dynamics, and a mass transfer problem. In all cases, we discretize in space with second order
centered finite differences and we employ the trapezoidal rule for the quadrature of the integral
operators. All the numerical experiments have been performed on an Intel® Core™ i7-10750H
CPU with six physical cores and 16GB of RAM, using MATLAB programming language. As
a software, we use MathWorks MATLAB® R2022a. In order to compute the needed actions
of exponential and ¢;-function, we employ the kiops function', which is based on the Krylov
method and whose underlying algorithm is presented in Reference [35]. The code used for the
simulations, accompanied by a detailed description, can be found in a GitHub repository?. In
particular, it allows to reproduce the figures of all the following numerical experiments.

4.1 Control in opinion dynamics

In this section we consider two models for control of opinion dynamics, namely the Sznajd and
the Hegselmann—Krause (bounded confidence) ones, similarly to References [8, 38, 54]. We
set both models in the spatial domain Q = [—1, 1], whose boundaries represent the extremal
opinions. The running cost is e(t,x,p) = (x —x;)?p and the selective function s(¢,x,p) is set
to the constant 1 (hence, we use the exponential Euler-Magnus scheme (14) for the forward
equation). For both the problems we consider in model (5) zero-flux boundary conditions
everywhere and null terminal cost function ¢(7,x,p(T,x)) = 0.

Thttps://gitlab.com/stephane.gaudreault/kiops/-/tree/master/, commit 94149844
2https://github.com/cassinif/expint_mfsoc, commit a7b6748.
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4.1.1 Sznajd model

In the first numerical experiment we present an example of Sznajd model for opinion formation
taken from Reference [8]. In particular, we consider the interaction function p(x,y) = x> — 1,
representing a repulsive interaction, and the target point in the running cost x; = —0.5. More-
over, we set the penalization parameter ¥ = 0.5 and the diffusion coefficient ¢ = 1/0.02. The
initial density function is of bimodal type

Po(x) = C(p4(x+0.75;0.05,0.5) + p (x— 0.5;0.15, 1)),

pi(x:a,b) = max{— <%)2+a,0}

and C defined so that [, po(x)dx = 1.

First of all, we show that the expected temporal rate of convergence of the exponential inte-
grators is preserved also after a complete solution of the model. In fact, for a semidiscretization
in space with n = 200 uniform grid points, we solve several times model (5) by the steepest
descent method described at the end of Section 2 by employing an increasing sequence of time
steps, ranging from m = 300 to m = 700. Each time, after the stabilization of the functional _Z,
we measure the error at the final time 7 = 4 for p(¢) and at initial time for y(¢) with respect
to reference solutions. We display in Figure 1 the obtained relative errors, which confirm the
expected accuracy and rate of convergence.

where

-2 -2
ol S [T s
5 | Fe | 8| |
5) i *x\i( ) i il
2 ; T 2 .. :
= = e
[} B Q B ‘*Q 1
[ ~ o
X Error of p(T) © )
1073 I I | 1073 | | |
300 400 500 600700 300 400 500 600700
m m

Figure 1: Relative errors in the infinity norm of p(T') (T = 4, left plot) and y(0) (right plot),
with respect to a reference solution, for the Sznajd model described in Section 4.1.1 with n =
200 spatial discretization points and varying number of time steps m. A black dashed reference
line of slope —1 is also displayed.

Then, we show the behavior of the Sznajd model in opinion formation. For this purpose we
use a spatial discretization of n = 800 points and m = 200 time steps. Notice that we decide
to employ a relatively large number of discretization points in space to highlight the fact that
the exponential integrators do not exhibit any CFL restriction, in contrast to standard explicit
methods. In Figures 2 and 3 we show the evolution of the density p(¢,x) and of the control
u(t,x). The results have the expected behavior of concentration of the opinions around the target
point x; = —0.5 and qualitatively match the analogous simulation available in the literature [8].
Moreover, we show in Figure 4 the value of the functional ¢ (u') at the successive iterations
of the steepest descent method. We observe that the method needs 23 iterations to reach the
input tolerance 2 - 1073, Finally, the overall computational time of this simulation is about 40
seconds.
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3 ‘ ‘ : : :
Y *  po(x) — Initial density
Pl A + p(T,x) - Final density
+
21 : + xq — Target B
—~ + +
f‘j.\ * ++ *“”M”’.!
~—" + & *
Q , ) J *
1 [ + ++ : *’ 1
* *
+ "" * *
::#..* . > .
t"" . +++ * -
o A A J PR | ; ; I
-1 -0.8-0.6-04-02 0 02 04 06 08 1

X

Figure 2: Density functions at initial time and at final time for the Sznajd model described in
Section 4.1.1 with n = 800 spatial discretization points and m = 200 time steps. For visualiza-
tion reasons, the densities are displayed each tenth point.

p(t,x) u(t,x)
5 8 1
0.5
4 6
A A 4
2
0
~1 05 0 05 1 ~1 05 0 05 1
X X

Figure 3: Evolution of the density p(z,x) (left) and of the control u(r,x) (right) up to the final
time 7 = 8 for the Sznajd model described in Section 4.1.1 with n = 800 spatial discretization
points and m = 200 time steps.

4.1.2 Hegselmann-Krause model

In the second numerical experiment we present an example of Hegselmann—Krause model for
opinion formation taken from Reference [8]. In particular, we take the interaction function
P(X,Y) = X{jx—y|<x} (*,¥), with kK = 0.15, and the target point in the running cost x; = 0. More-
over, we set the penalization parameter Y = 2.5 and the diffusion coefficient 6 = 1/0.002. The

initial density function is
po(x) = C(0.5+¢(1—x?)),

where € = 0.01 and C defined so that [ po(x)dx = 1. For this model, we directly present the
results using a spatial discretization of n = 1000 points and m = 100 time steps up to the final
time 7 = 10. In Figures 5 and 6 we display the evolution of the density p(z,x) and of the
control u(z,x). Similarly to the Sznajd model, the results match both the expectations and the
outcomes in the literature. Then, we display in Figure 7 the value of the functional ¢ (u’) at
the successive iterations of the steepest descent method. We observe that the method needs 15
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Figure 4: Value of the functional ¢ (u’) at the successive iterations of the steepest descent
method for the Sznajd model described in Section 4.1.1 (n = 800 and m = 200).

iterations to reach the input tolerance 2- 1073, Finally, this simulation takes roughly 15 seconds
to run.
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Figure 5: Density functions at initial time and at final time for the Hegselmann—Krause model
described in Section 4.1.2 with n = 1000 spatial discretization points and m = 100 time steps.
For visualization reasons, the densities are displayed each fifth point.

4.2 Crowd dynamics: fast exit scenario

In this section we consider a model for crowd dynamics taken from Reference [16]. We set the
model in the spatial domain Q = [—1, 1], whose boundaries represent the exit doors. The non-
local interaction kernel p(x,y) is null and the selective function s(¢,x,p) is 1 — p (hence, we
employ the exponential Euler method (12) for the forward equation). The diffusion parameter
is 0 = 1/0.04, the exit intensity flux is B = 10, the penalization parameter is ¥ = 1, and the
running cost is e(¢,x,p) = p. The initial density function models the presence of two distinct
groups, namely po(x) = 0.9¢1000x+04)% | () 6561502,

Similarly to the opinion dynamics case, we first show that the expected temporal rate of
convergence of the exponential integrators is preserved after a complete solution of the model.
To this purpose, we discretize this problem with n = 200 spatial discretization points and with
different number of time steps, from m = 300 to m = 700, up to the final time 7 = 2. After
the stabilization of the functional _# in the steepest descent algorithm, we measure the error at
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Figure 6: Evolution of the density p(z,x) (left) and of the control u(z,x) (right) up to the final
time 7 = 10 for the Hegselmann—Krause model described in Section 4.1.2 with n = 1000 spatial
discretization points and m = 100 time steps.
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Figure 7: Value of the functional ¢ (u’) at the successive iterations of the steepest descent
method for the Hegselmann—Krause model described in Section 4.1.2 (n = 1000 and m = 100).

final time for p(¢) and at initial time for y(¢) with respect to reference solutions. We display
in Figure 8 the obtained relative errors which again confirm the expected accuracy and rate of
convergence.

Then, we solve the same model up to the final time 7 = 3 and show its behavior. We
discretize this problem with n = 1000 spatial discretization points and m = 250 time steps. We
show the evolution of the density and of the control in Figures 9 and 10, where we can clearly
see the exit of the crowd from the two doors. Moreover, we show in Figure 11 the value of
the functional ¢ (u’) at the successive iterations of the steepest descent method. We observe
that the method needs 13 iterations to reach the input tolerance 2 - 1073, Finally, the overall
computational time of this simulation is about 45 seconds.

4.3 Mass transfer problem via optimal control

In this final example, we present an optimal control approach to a mass transfer problem, see for
instance References [ 13, 51], where the particle density accounts for non-local interactions [ 14,

G. Albi, M. Caliari, E. Calzola, F. Cassini 55



JAS Exponential integrators for a mean-field selective optimal control problem

1072 1072
 xemrann o [omvo]
S . a S ,~~~ N
g x. z R
= T =
3} r Teax 3} r )
7 . 7
b ¢
1073 | | | 1073 | | |
300 400 500 600700 300 400 500 600700
m m

Figure 8: Relative errors in the infinity norm of p(T') (T = 2, left plot) and y(0) (right plot),
with respect to a reference solution, for the pedestrian model described in Section 4.2 with
n = 200 spatial discretization points and varying number of time steps m. A black dashed
reference line of slope —1 is also displayed.
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Figure 9: Density functions at initial time and at final time for the two-group crowd model
described in Section 4.2 with n = 1000 spatial discretization points and m = 250 time steps.
For visualization reasons, the densities are displayed each tenth point.

]. Hence, the goal is to move the initial density function in the spatial domain Q = [—1, 1]
po(x) = Ce~(x—H)*/(205)
where 1) =0, op = 0.1, and C is defined so that [, po(x)dx = 1, to a target one
px)=C (e—(x—ul)z/(%lz) + e—(x—uz)z/@f’zz)) :

where u; = 0.5, 61 = 0.1, g, = —0.3, and 6, = 0.15, and C is defined so that [, p(x)dx =
1. The boundary conditions are of zero-flux type, the running cost is e(t,x,p) = (p — p),
the interaction kernel is of Sznajd type p(x,y) = (x> —1)/20, and the selective function is
s(t,x,p) = 1. The penalization parameter is Y = 0.1 and the diffusion parameter is 6 = 1/0.02.
We discretize the problem with n = 1000 spatial grid points and m = 200 time steps, and
we run the simulation up to the final time 7 = 3. We consider a terminal cost given by
c(T,x,p(T,x)) = (p(T,x) — p(x))?, which translates into yz(x) = p(T,x) — p(x). In Figure 12
we plot the density functions at initial and final time, and we can observe that the initial density
is correctly transported to the target one. In addition, in Figure 13 we present the evolution
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Figure 10: Evolution of the density p(z,x) (left) and of the control u(,x) (right) up to the final
time 7 = 3 for the two-group crowd model described in Section 4.2 with n = 1000 spatial
discretization points and m = 250 time steps.
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Figure 11: Value of the functional ¢ (u’) at the successive iterations of the steepest descent
method for the two-group crowd model described in Section 4.2 (n = 1000 and m = 250).

of the density and of the control. Finally, we show in Figure 14 the values of the functional
I (u’) at the successive iterations of the steepest descent method. We observe that the method
needs 33 iterations to reach the input tolerance 2 - 103, with an overall computational time of
this simulation of roughly 75 seconds.

5 Conclusions

We presented a mean-field optimal control model where the constraint is represented by a
non-linear PDE with non-local interaction term and diffusion describing the evolution of a con-
tinuum of agents. We provide, at a formal level, first order optimality conditions, resulting
in a forward-backward coupled system with associated boundary conditions. Thus, a reduced
gradient method is derived for the synthesis of the mean-field control, where the primal and ad-
joint equations are efficiently solved by using exponential integrators. Our proposed approach
has been successfully tested on various examples from the literature, including models of opin-
ion formation and pedestrian dynamics in the one-dimensional setting. In future works we
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Figure 12: Density functions at initial time and at final time for the mass transfer problem
described in Section 4.3 with n = 1000 spatial discretization points and m = 200 time steps.
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Figure 13: Evolution of the density p(z,x) (left) and of the control u(z,x) (right) up to the
final time 7 = 3 for the mass transfer problem described in Section 4.3 with n = 1000 spatial
discretization points and m = 200 time steps.
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Figure 14: Value of the functional ¢ (u') at the successive iterations of the steepest descent
method for the mass transfer problem described in Section 4.3.
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plan to exploit the efficiency of exponential integrators to tackle higher dimensional problems
(possibly using ad hoc techniques for tensor structured problems [18, 19, 20]) and scenarios
where a fine spatial discretization is required to correctly capture the behavior of the controlled
dynamics.
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