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Abstract

In this paper, we analyze theoretical and implementation aspects of Time-Accurate and
highly-Stable Explicit Runge-Kutta (TASE-RK) methods, which have been recently intro-
duced by Bassenne et al. (2021) [5], for the numerical solution of stiff Initial Value Prob-
lems (IVPs). These methods are obtained by combining explicit RK schemes with suitable
matrix operators, called TASE operators, involving in their expression a matrix J related
to the Jacobian of the differential problem to be solved. By analyzing the formulation and
order conditions of TASE-RK methods, we show that they can be interpreted as particular
linearly implicit RK schemes, and that their consistency properties are independent of the
choice of J. Using this information, we propose a MATLAB implementation of TASE-RK
methods, which makes use of matrix factorizations and allows setting J according to user
preferences.

Keywords: RK methods, TASE preconditioners, TASE-RK methods, MATLAB code, stiff
problems (MSC2020: 65L04, 65L06, 65M06, 65Y99)

1 Introduction
In this manuscript, we focus on the numerical solution of IVPs of the form{

y′(t) = f (t,y(t)),
y(t0) =y0,

t ∈ [t0, te], f : R×Rd → Rd, (1)

characterized by severe stiffness, usually arising from the spatial semi-discretization of Partial
Differential Equations (PDEs) in several applications. Stiffness is a well-known characteristic
of differential equations, and several definitions have been given over the years to formalize
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this concept, see, e.g., [10, 11]. Roughly speaking, a system of differential equations is stiff
when an explicit numerical method is forced to use very small discretization steps in order to
furnish an accurate solution, thus becoming totally inefficient.

Research in the field of efficient methods for solving problems of this type has developed
a lot over the years, and still continues. Indeed, most of the models of differential equations
that derive from application in several contexts, e.g., corrosion [4, 15], biology [19], chemistry
[8, 7], physics [3, 6, 20, 21], are characterized by severe stiffness. The first methods that
have been proposed to deal with stiffness are the implicit ones, among which the most famous
are the fully implicit RK schemes (e.g. the Gauss-Legendre and RADAU formulas [11, 28,
29]). Fully implicit methods manage to be particularly stable with quite large values of the
discretization step. However, fully implicit RK methods are particularly expensive since they
require the solution of systems of non-linear equations (of the size of the problem times the
number of stages) at each time step, and this constitutes an obstacle especially for problems
of large dimensions, such as semi-discretized PDEs. For this reason, several implementation
procedures have been proposed in the scientific literature to optimize the efficiency of implicit
methods by reducing the number of required operations or the size of the underlying non-
linear system, see, e.g., [26]. To reduce the complexity of implicit methods, alternative RK
schemes have been formulated, such as DIRK (Diagonally Implicit RK) (see, e.g., [27] and
references therein contained), or IMEX (IMplicit EXplicit) (see, e.g. [14, 13] and references
therein contained). Furthermore, particularly efficient and stable methods for stiff problems
are the so-called linearly implicit RK schemes, which arise for example from a linearization of
DIRK. Such methods require the solution of a fixed number of linear systems at each step.

The most famous linearly implicit RK schemes are the Rosenbrock and W-methods, see,
e.g., [23, 25, 24, 34]. Moreover, recently Bassenne et al. [5] proposed a new class of RK meth-
ods, called TASE-RK methods. These numerical schemes have been subsequently improved
by Calvo et al. [12]. As pointed out in [5, Introduction], the idea of the former is based on the
fact that a user is not a-priori aware of the severity of the stiffness of a differential problem.
Thus, a convenient approach may be to always start using an explicit RK method, which is
very simple and fast to program. Then, if the numerical results are not good, to avoid using
another code and reprogramming a new method, the user can keep the one already applied by
pre-conditioning the problem to solve. In this way the stiffness of the problem is moderated and
therefore the probability that the explicit RK method works well increases. TASE-RK methods
are very interesting and promising, as shown by the large number of scientific articles that have
been produced based on them [2, 18, 17, 22, 30, 33, 36]. Some of these manuscripts show
that TASE operators are very efficient also when used with other classes of numerical schemes,
such as peer methods [1, 16, 18, 31, 32, 35].

In this manuscript, we focus on the implementation aspects of TASE-RK methods. In par-
ticular, by analyzing their formulation, we express them in such a way that their implementation
and also the study of the related properties of accuracy and stability simplify. Indeed, we revise
TASE-RK methods as linearly implicit numerical schemes, and compute an efficient solution
of the underlying linear systems. These systems involve matrices that depend on the Jacobian
J f = fy(t,y(t)) of the differential problem. However, since the consistency analysis shows that
the TASE-RK methods preserve their order regardless of the choice of these matrices, we pro-
pose an implementation that allows the user to fix them in a convenient way. Finally, we show
two examples of use of the proposed MATLAB code.

Summarizing, this paper is organized as follows: in Section 2 we recall the original TASE-
RK methods and formulate them as linearly implicit RK methods; in Section 3 we discuss the
related properties of accuracy and stability; in Section 4 we show and explain the improvement
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of TASE-RK methods performed by Calvo et al.; in Section 5 we propose and describe a
MATLAB function for implementing TASE-RK methods; in Section 6 we show an example
of use through two numerical tests concerning a system of Ordinary Differential Equations
(ODEs) and a semi-discretized PDE; finally, some conclusions are drawn in Section 7.

2 Formulation
Let us fix, from now on, the discrete grid {tn = t0 +nh;n = 0, . . . ,N; tN = te}, h > 0. The idea
of derivation of the TASE-RK methods arises from the following observations.

First, consider the implicit Euler method for solving the problem y′(t) = Jy(t), with J rep-
resenting a generic matrix of order d:

yn+1 = yn +hJyn+1. (2)

Note that the method (2) can be rewritten as (Id −hJ)yn+1 = yn, where Id indicates the Identity
matrix of order d. Assuming the matrix Id −hJ to be invertible, we get

yn+1 = (Id −hJ)−1yn ⇐⇒ yn+1 = yn +((Id −hJ)−1 − Id)yn.

Furthermore, using that

(Id −hJ)−1 − Id = (Id −hJ)−1[Id − (Id −hJ)] = (Id −hJ)−1hJ,

we can finally write

yn+1 = yn +hT1(hJ)Jyn, with T1(hJ) = (Id −hJ)−1. (3)

Note that the numerical scheme (3) corresponds to the explicit Euler method applied to the
problem y′(t) = T1(hJ)Jy(t). Therefore, solving

y′(t) = Jy(t), J ∈ Rd,d, (4)

with implicit Euler method is equivalent to solving

y′(t) = T1(hJ)Jy(t), T1 : Rd,d → Rd,d, T1(A) := (Id −A)−1 ∈ Rd,d, (5)

using explicit Euler, which in principle has bad stability properties. However, the precondition-
ing made to the vector field of the problem (4) by means of the matrix T1 definitely improves
the stability of explicit Euler method, since we get implicit Euler.

Using the above observations, Bassenne et al. have proposed a general setting for construct-
ing new RK schemes with s stages and order p = s suitable for stiff problems. The general
approach consists of the following two main steps.

First, the differential problem (1) is modified as follows:{
u′(t) =Tp(hJ f ) f (t,u(t)), Tp : Rd,d → Rd,d,

u(t0) =y0.
(6)

Here, Tp is a matrix operator which depends on the product between the step-size h and the Ja-
cobian J f = fy(t,y(t)) of the problem, where in J f for simplicity of notation we do not indicate
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the time dependence. The only property required for Tp is that it must be an approximation of
order p of the Identity. This means that

Tp(hJ f ) = Id +O(hp). (7)

Subsequently, the perturbed problem (6) is solved through an explicit RK method of order p.
Therefore, more conveniently, we can express the TASE-RK methods directly in the fol-

lowing way: 
Yn,i =yn +h

i−1

∑
j=1

ai jTp(hJn) f (tn + c jh,Yn, j), i = 1, . . . ,s,

yn+1 =yn +h
s

∑
j=1

b jTp(hJn) f (tn + c jh,Yn, j).

(8)

Here, Yn, j ≈ y(tn + c jh), yn ≈ y(tn), and A = (ai j), b = (b j), c = (c j) represent the coefficients
of the underlying explicit RK method. Note that, in the discrete setting, the exact Jacobian J f
is replaced by Jn = fy(tn,yn). Hence, TASE-RK methods require the Jacobian to be updated at
each integration time step.

The TASE operator Tp proposed by Bassenne et al. is a natural extension of the function T1
in Equation (5). In particular, adding in T1 the dependency on a real positive parameter α , the
TASE operator of order one reads

T1(α,hJ f ) = (Id −αhJ f )
−1, α > 0.

Using Richardson extrapolation, Bassenne et al. have then recursively defined a generic family
of TASE operators of order p, as follows:

Tp(α,hJ f ) =

 (Id −αhJ f )
−1, if p = 1,

2p−1

2p−1 −1
Tp−1(α/2,hJ f )−

1
2p−1 −1

Tp−1(α,hJ f ), if p ≥ 2.
(9)

The TASE operator Tp (9) can also be expressed as

Tp(α,hJ f ) =
p−1

∑
k=0

βp,k(2k −αhJ f )
−1, (10)

where the coefficients βp,k must be suitably fixed (see [5, Table 2]).
From the formulation (8), and from the expression of the TASE operator (10), it is clear

that TASE-RK methods are linearly implicit numerical schemes. In particular, these methods
require the Jacobian to be updated at each step, and the solution of p linear systems depending
on Jn for each stage Yn,i, i = 2, . . . ,s (since Yn,1 = yn, we do not take into account the first stage).
Furthermore, there are p extra linear systems concerning the computation of the advancing
solution. Thus, TASE-RK methods require the solution of sp linear systems at each step.

3 Consistency and stability analysis
In this section, we analyze the consistency and stability of TASE-RK methods.

We start by showing below that a TASE-RK scheme has the same order as the underlying
explicit RK method.
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Theorem 3.1. [5, 12] Let us consider an explicit RK method of order p, and assume that the
TASE operator Tp satisfies the property (7). Then, the corresponding TASE-RK method (8) is
consistent of order p.

This theorem is quite natural by observing that the exact solutions y(t), u(t), of the original
and perturbed problems (1), (6), respectively, satisfy ||y(t)−u(t)||= O(hp), thanks to property
(7). Using an explicit RK method of order p for the perturbed problem, we obtain that ||u(tn)−
un|| = O(hp), where un ≈ u(tn), for each n. With un we here denote the numerical solution
of the perturbed problem through the explicit RK method, i.e. the solution of the TASE-RK
method. Therefore, it holds that ||y(tn)−un||= O(hp), i.e. the TASE-RK method has order p.

Several interesting observations can be made starting from Theorem 3.1.
We first write the Taylor series expansion of the TASE operator Tp (9) proposed by Bassenne

et al. as follows:
Tp(α,hJ f ) = Id +Qp(hJ f )

p +O(hp+1).

By making simple calculations, it can be shown that Qp = α p/c, where c is a known positive
constant whose value depends on p.

Remark 3.1. The smaller |Qp| is, the more Tp approximates the Identity matrix in an accurate
way, and therefore the perturbed problem (6) gets closer to the initial one (1). Indeed, in the
manuscripts [5, 12] it is observed that the smaller |Qp| is, the lower the error provided by the
TASE-RK methods is.

Remark 3.2. In the manuscripts [5, 12], TASE-RK methods of order p = s(≤ 4) have been
derived. This choice allows to attain the maximum possible order using the minimum number
of stages and simplifies the study of linear stability, as discussed below.

Now, we analyze the stability properties of TASE-RK methods. It is known that the sta-
bility function of explicit s-stage RK methods with order p = s ≤ 4 is independent of their
coefficients. In particular, it can be expressed as follows:

R(z) = 1+ z+ · · ·+ 1
p!

zp.

Here, z = hλ , where λ is a complex parameter with Re(λ )< 0 associated with the classical test
equation y′(t) = λy(t). The stability function of TASE-RK methods can be easily derived from
it. Indeed, considering the perturbed problem y′(t) = Tp(α,hλ )λy(t), we get the following
stability function:

RTp(α,z) = 1+ zTp(α,z)+ · · ·+ 1
p!
(zTp(α,z))p. (11)

Note that for TASE-RK methods with order p = s the stability function is independent
of the coefficients of the underlying explicit RK scheme. The only parameter on which the
stability function depends is that of the TASE operator α . Therefore, adequately fixing the free
parameter α of Tp, using TASE technique it is possible to improve the stability properties of
any explicit RK method with order p = s ≤ 4.

Remark 3.3. Property (7) holds for the operator Tp (9) for any value of the parameter α and
matrix J f . Thus, according to Remark 3.1, the free parameter α can be set to minimize |Qp|, in
order to have a small error. Moreover, since the function RTp (11) depends on α , this parameter
can be determined in order to get A-stability (or at least A(θ)-stability) for the corresponding
TASE-RK method. See, e.g., [11, p. 230] for the stability definitions. Furthermore, we can
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choose a generic matrix other than Jn in the formulation of TASE-RK methods without altering
their order of consistency; however, good stability properties are preserved provided that Jn is
a suitable approximation of the Jacobian.

In the paper [5], Bassenne et al. have set, for the cases p = s = 2,3,4, the α parameter in
order to obtain a good balance between the minimum |Qp| value, and the best possible stability
properties for the corresponding TASE-RK method. The related results are reported in Table 1.

Table 1: Properties of TASE-RK methods in correspondence of the values of α proposed in the
manuscript [5].

p = s Stability properties |R(∞)| |Qp| α

2 A-stability 1 1.13 1.5
2 Strong A-stability 0.5 4.50 3
3 A(θ)-stability, θ = 89.31° 1 2.70 2.7858
4 A(θ)-stability, θ = 88.36° 1 13.14 5.3854

4 Improved TASE-RK methods
The TASE-RK methods have been improved by Calvo et al., who in the paper [12] proposed
the following generalization of the family (9):

Tp(ααα,hJ f ) =
p

∑
j=1

γ j(Id −α jhJ f )
−1,

γ j =
( 1

α j

)p−1
/∏

k ̸= j

( 1
α j

− 1
αk

)
, ααα = (α1, . . . ,αp) ∈ Rp.

(12)

Here, α j > 0 and α j ̸= αk for all j ̸= k. It can be easily shown that the TASE family (12)
generalizes the one given by Bassenne et al., which can be derived using α j = α/2 j−1, j =
1, . . . , p. By construction it holds that (see [12, Eqs. (6)-(7)])

Tp(ααα,hJ f ) = Id +Qp(hJ f )
p +O(hp+1) with Qp =

p

∏
j=1

α j.

The motivation that led Calvo et al. to this generalization is based on the fact that the
first family of TASE operators depends on a single free parameter α . As seen in the previous
section, α should be set to obtain the optimal balance between the minimum value of the error
constant |Qp| and the best stability of the corresponding TASE-RK method. However, the
results in Table 1 are not fully satisfactory, mainly because it is not possible to achieve strongly
A(θ)-stable or even L(θ)-stable methods for s = p = 3,4. For problems with high stiffness,
these properties are very important.

Thanks to this generalization, there are p (p > 1) free parameters α j to fix for stability and
accuracy reasons, and therefore more possibilities to improve TASE-RK methods. We note that
obviously for this generalization the stability function becomes

RTp(ααα,z) = 1+ zTp(ααα,z)+ · · ·+ 1
p!
(zTp(ααα,z))p.
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Furthermore, the computational cost of the TASE-RK methods (8) with the new Tp (12) remains
the same. Indeed, it is still required the solution of sp linear systems at each step depending on
Jn. In Table 2, we report the properties of the TASE-RK methods in correspondence of the α j
parameters of the operator Tp (12) proposed by Calvo et al. in the paper [12].

Table 2: Properties of TASE-RK methods in correspondence of the values of ααα proposed in the
manuscript [12].

p = s Stability properties |R(∞)| |Qp| ααα

2 Strong A-stability 0.5 4.50 (3,1.50)
3 L(θ)-stability, θ = 89.02° 0 6.88 (2.315,1.880,1.582)
4 Strong A(θ)-stability, θ = 87.34° 0.270 44.32 (3.940,2.451,2.227,2.061)

By comparing Tables 1, 2, it is clear that the error constant |Qp| is of the same order of
magnitude for both families of operators (9), (12), for p = 2,3,4. Also the angle of A(θ)-
stability is more or less similar for the versions proposed in the two tables. However, TASE-RK
methods with operator (12) have much better strong stability properties. Therefore, from now
on we refer directly to the operators proposed by Calvo et al. (12).

5 MATLAB code and computational effort
From the analysis made in the previous sections, it is clear that the consistency of the TASE-
RK methods is independent of the choice of Jn. Indeed, for TASE-RK methods, to get order
p, it suffices that the underlying explicit RK method has order p and property (7) holds (see
Theorem 3.1).

As observed in Remark 3.3, stability reasons require Jn to be a suitable approximation of
the Jacobian, obtained, for example, by fixing Jn as a constant matrix (thus avoiding updating
Jn at all points of the time grid). For this reason, we report below an implementation of TASE-
RK methods allowing the user to choose whether to update the Jacobian at each step, or fix it
as a constant matrix. Furthermore, with this implementation, methods can be applied with any
number of stages and with a TASE operator having a generic number of terms (therefore also for
p ̸= s). Finally, referring to formulation (8) of TASE-RK methods, we exploit the MATLAB lu
function for factorizing the coefficient matrices and then the command backslash for solving
the required linear systems by means of the forward/backward substitution. At the end of this
section, we also provide a brief analysis of the computational effort of TASE-RK methods with
and without exact Jacobian, showing that the choice of constant Jn allows to remarkably reduce
the number of required operations.

5.1 Function TASERK.m

Let us describe below the input and output arguments, together with the employed auxiliary
MATLAB functions, of the code TASERK.m, which allows to apply the TASE-RK methods pro-
posed by Calvo et al. [12] to a differential problem of the type (1) chosen by the user.

Input arguments

• N - integer scalar
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Number of (equally spaced) discrete time intervals into which the user decides to subdi-
vide the continuous grid [t0, te].

• tspan - double array
Row vector of length two containing the first and last grid points t0, te, respectively.

• y0 - double array
Column vector with the initial condition y0 ∈ Rd .

• Fun - function handle
Function which returns the vector field f , evaluated at (t,y), of the problem (1) that
the user wants to solve; t ∈ R, y ∈ Rd , constitute the input arguments of Fun, and the
column vector f (t,y) ∈ Rd is the output.

• Jac - function handle
Function which returns the Jacobian matrix of the problem (1) that the user wants to
solve, evaluated at a point (t,y), or a suitable fixed approximation of J f ; in the first
case, t ∈R, y ∈Rd , constitute the input arguments of Jac, and the matrix fy(t,y) ∈Rd,d

is the output.

• Method - integer array
Array with the TASE-RK methods to apply; in particular:

- 20 corresponds to the TASE-RK with s = p = 2, using the midpoint rule as under-
lying explicit RK;

- 30 corresponds to the TASE-RK with s = p = 3, using the Ralston’s method as
underlying explicit RK;

- 40 corresponds to the TASE-RK with s = p = 4, using the Kutta’s method as un-
derlying explicit RK.

For example, if we want to use methods 20 and 30, then Method=[20,30]. We will
later show an example where we apply all the TASE-RK methods using the same main
program.

• jacup - integer scalar
Parameter which is equal to 0 if the user wants to use constant Jn, 1 otherwise.

Output arguments

• yT - double array
Column vector of length d with the numerical solution computed by the chosen TASE-
RK method at last grid point te.

• y - double array
Matrix of size d × (N + 1) having in column n+ 1 the numerical solution yn computed
by the chosen TASE-RK method.

• t - double array
Row vector of length N+1 with all the discrete grid points {tn = t0+nh;n= 0, . . . ,N; tN =
te}.
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• CPUtime - double scalar
Total CPU time in seconds taken by the chosen TASE-RK method.

Auxiliary MATLAB functions

• backslash
Computes A−1B, where A and B are input matrices.

• cputime
Returns the current CPU time in seconds.

• eye
Returns the Identity matrix of required dimension.

• kron
Computes, in general, the Kronecker product of two matrices.

• length
Returns the length of a vector.

• linspace
Generates a row vector of linearly equally spaced points.

• lu
Computes the LU factorization of a matrix.

• ones
Generates a matrix of the required size with all elements equal to one.

• sum
Computes the sum by rows or columns of the elements of a matrix.

• zeros
Generates a matrix of the required size with all elements equal to zero.

Below, we report the MATLAB function TASERK.m.

Code 1: function TASERK.m.
1 function [yT,y,t,CPUtime] = TASERK(N,tspan,y0,Fun,Jac,Method,jacup)
2
3 % Fixing explicit RK tableau and TASE operator coefficients
4 switch Method
5 case 20 % 20−midpoint method of order s=p=2
6 s = 2; p = 2; alpha = [3 3/2];
7 A = [0 0;1/2 0]; c = [0 1/2]; b = [0 1];
8
9 case 30 % 30−Ralston method of order s=p=3
10 s = 3; p = 3; alpha = [2.31469 1.87961 1.58222];
11 A = [0 0 0;1/2 0 0;0 3/4 0];
12 c = [0 1/2 3/4]; b = [2/9 1/3 4/9];
13
14 case 40 % 40−Kutta method of order s=p=4
15 s = 4; p = 4; alpha = [3.939556 2.450558 2.227083 2.061235];
16 A = [0 0 0 0;1/2 0 0 0;0 1/2 0 0;0 0 1 0];
17 c = [0 1/2 1/2 1]; b = [1/6 1/3 1/3 1/6];
18 end
19
20 % Computation of gamma
21 alpham1 = 1./alpha; gamma = [];
22 for i = 1:p
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23 prod = 1;
24 for j = 1:p
25 if i ~= j
26 prod = prod*(alpham1(i)−alpham1(j));
27 end
28 end
29 gamma(i) = alpham1(i)^(p−1)/prod;
30 end
31
32 % Initialization
33 t = linspace(tspan(1),tspan(2),N+1); % t: discrete time grid
34 h = (tspan(2)−tspan(1))/N; % h: constant time step−size
35 d = length(y0); % d: dimension of the problem
36 Id = eye(d); % Id: Identity matrix of order d
37 n = 1; % n: index representing the current step
38 y = y0;
39
40 if (jacup == 0) % If we want a ’constant Jacobian’
41 C = cputime;
42 Jn = Jac();
43 for l = 1:p % Compute, outside the loop, the LU factorizations of Id−alpha(l)*(h*Jn)
44 [Ll(1:d,(l−1)*d+1:l*d),Ul(1:d,(l−1)*d+1:l*d)] = lu(Id−alpha(l)*(h*Jn));
45 end
46 for n = 2:N+1
47 Y = zeros(d,s); % Block matrix with stages in columns
48 Y(:,1) = y(:,n−1);
49 f = zeros(d,s); % Block matrix with h*fi in columns
50 F = zeros(d,s); % Block matrix with Tp*h*fi in columns
51 for i = 1:s−1 % Compute all the stages
52 f(:,i) = h*Fun(t(n−1)+h*c(i),Y(:,i));
53 for l = 1:p
54 F(:,i) = F(:,i) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f

(:,i)));
55 end
56 Y(:,i+1) = y(:,n−1) + sum(kron(A(i+1,:),ones(d,1)).*F,2);
57 end
58 f(:,s) = h*Fun(t(n−1)+h*c(s),Y(:,s));
59 for l = 1:p
60 F(:,s) = F(:,s) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f(:,s))

);
61 end
62 y(:,n) = y(:,n−1) + sum(kron(b,ones(d,1)).*F,2);
63 end
64 Cf = cputime;
65 elseif (jacup == 1) % If we want exact Jacobian
66 C = cputime;
67 for n = 2:N+1
68 Jn = Jac(t(n−1),y(:,n−1)); % Update Jn at each step
69 for l = 1:p % Compute, at each step, the LU factorizations of Id−alpha(l)*(h*Jn)
70 [Ll(1:d,(l−1)*d+1:l*d),Ul(1:d,(l−1)*d+1:l*d)] = lu(Id−alpha(l)*(h*Jn));
71 end
72 Y = zeros(d,s); % Block matrix with the stages in column
73 Y(:,1) = y(:,n−1);
74 f = zeros(d,s); % Block matrix with h*fi in column
75 F = zeros(d,s); % Block matrix with Tp*h*fi in column
76 for i = 1:s−1 % Compute all the stages
77 f(:,i) = h*Fun(t(n−1)+h*c(i),Y(:,i));
78 for l = 1:p
79 F(:,i) = F(:,i) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f

(:,i)));
80 end
81 Y(:,i+1) = y(:,n−1) + sum(kron(A(i+1,:),ones(d,1)).*F,2);
82 end
83 f(:,s) = h*Fun(t(n−1)+h*c(s),Y(:,s));
84 for l = 1:p
85 F(:,s) = F(:,s) + gamma(l)*(Ul(1:d,(l−1)*d+1:l*d) \ (Ll(1:d,(l−1)*d+1:l*d)\f(:,s))

);
86 end
87 y(:,n) = y(:,n−1) + sum(kron(b,ones(d,1)).*F,2);
88 end
89 Cf = cputime;
90 end
91
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92 CPUtime = Cf − C;
93 yT = y(:,end);
94 end

5.2 Description of the code
Let us describe the lines of code of the function TASERK.m.

• From line 3 to line 18: we select the TASE-RK methods chosen by the user; method 20
corresponds to the case s = p = 2, using the midpoint rule as underlying explicit RK;
method 30 corresponds to the case s = p = 3, using the Ralston’s method as underlying
explicit RK; method 40 corresponds to the case s = p = 4, using the Kutta’s method as
underlying explicit RK.

• From line 20 to line 30: we compute the values of γ j, storing them in a vector gamma,
starting from the alpha (ααα) vector according to Equation (12).

• From line 32 to line 38: we define the time grid t, the step-size h, the Identity matrix Id
of size d (i.e. the size of the problem); we also initialize the time step n, the matrix y,
which, at the end, will contain the numerical solution (in the columns) at all the discrete
points, and the CPU time C.

• From line 40 to line 64: if jacup= 0, i.e. we want to fix Jn avoiding updating it at
each step, we first call the function Jac.m, which returns in this case a suitable constant
approximation of Jn; then we apply the TASE-RK method as described below.

• From line 43 to line 45: using the lu command, we compute the LU factorizations of the
matrices Id −α jhJn, j = 1, . . . , p, whose summed inverses define the TASE operator Tp
according to Equation (12); we allocate all the lower and upper triangular matrices L and
U of size d thus obtained in successive blocks of the matrices Ll and Ul, respectively,
which have dimension d × (pd); note that the matrices Ll and Ul are only computed
here, and are not updated within the method being Id −α jhJn, j = 1, . . . , p, constants.

• From line 46 to line 64: we compute the numerical solution at all grid points using the
TASE-RK method; we explain below the operations performed here.

– From line 47 to line 50: we define the matrix Y which, at the end of the current step,
will contain all the stages Yn, j, j = 1, . . . ,s, in columns; the matrix f which, at the
end of the current step, will contain all the function evaluations h f (tn + c jh,Yn, j),
j = 1, . . . ,s, in columns; the matrix F which, at the end of the current step, will
contain the products between Tp and h f (tn + c jh,Yn, j), j = 1, . . . ,s, in columns.

– From line 51 to line 61: we compute all the stages storing them in Y; note that the
products between Tp and h f (tn + c jh,Yn, j) are calculated by solving linear systems
of the form Ãx = b̃ by means of the backslash command, with Ã = Id −α jhJn, b̃ =
h f (tn+c jh,Yn, j), through the LU factorizations of the coefficient matrices stored in
the arrays Ll and Ul.

– Line 62: we compute the solution yn−1, which we store in the n-th column of the
matrix y; the index n is shifted by one with respect to n as the initial condition y0 is
stored in the first column of y (in MATLAB, array indexes start at 1).
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• From line 65 to line 90: if jacup= 1, we update Jn and therefore the LU factorizations of
the matrices Id −α jhJn, j = 1, . . . , p, at each step; in this case, the function Jac.m returns
the exact Jacobian of the problem evaluated at the desired grid point; note that, of course,
lines 72–89 correspond to lines 47–64 (in fact, the only change with respect to the case
jacup= 0 is due to the fact that Jn and the matrix factorizations must be updated at each
step and therefore appear inside the loop).

• From line 92 to line 94: we compute the total CPU time employed by the method and
store in the vector yT the numerical solution at the final point of the grid.

Note that, of course, setting Jn constant, the number of operations required by the method
drops drastically. In fact, for:

• jacup= 0, we have to compute only p LU factorizations, then using them in the solution
of sp linear systems per step; thus, at the end we have p LU factorizations plus N(sp)
linear systems;

• jacup= 1, we have to compute p LU factorizations per step, using them in the solution
of sp linear systems; thus, at the end we have N p LU factorizations plus N(sp) linear
systems.

Obviously, we underline that the cost of solving a linear system with already factorized matrix
is considerably reduced. In particular, given d the size of the problem, an LU factorization costs
O(d3/3), and solving a linear system with an already factorized matrix costs O(d2). Therefore,
the approach we propose in the code is especially convenient for problems of big dimensions,
and when a large number N of time grid points (i.e. small h) is required.

6 Examples of application
We report below two examples of application of the code TASERK.m. The first is quite simple
and concerns a system of ODEs. The second concerns the numerical solution of the famous
Burgers’ PDE.

6.1 Euler’s problem
In this subsection, we show the application of the function TASERK.m in solving the well known
Euler’s problem, given by the following system of coupled ODEs:

dy1

dt
=−2y2y3,

dy2

dt
=

5
4

y1y3,

dy3

dt
=− 1

2
y1y2,

t ∈ [t0, te]. (13)

This model is related to the rotational motion of solid bodies. We take t0 = 0, te = 10, and
y0 = (1,0,0.9). Easily, note that

J f =


0 −2y3 −2y2

5
4

y3 0
5
4

y1

−1
2

y2
−1
2

y1 0

 . (14)
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Since we can use a fixed approximation of the Jacobian to lower the computational cost
of TASE-RK methods preserving their order of consistency, if jacup= 0 we impose that the
function Jac returns the matrix J f evaluated at the initial point (t0,y0). Then, in this case we
evaluate the Jacobian only at the initial grid point, without updating it during the integration.

We report and describe below the main code, which we have called exampleEuler.m. In
line 2 we define the function Fun, which corresponds to funEuler.m. In line 3 we choose the
TASE-RK methods to use; we apply in this case the method with p = s = 4. From line 5 to line
10, we choose the jacup parameter and fix the function Jac according to its value. From line
13 to line 16, we set the time grid, the initial conditions and the number N of discrete intervals.
From line 19 to line 21 we also compute a reference solution by means of the MATLAB ode15s
function. In line 23 we apply the selected TASE-RK method to the Euler’s model. Finally, we
print the error at the final time grid point and the employed CPU time.

Code 2: main code exampleEuler.m.
1 %% Main code: exampleEuler.m
2 Fun = @funEuler;
3 Tmethod = [40]; % Select the TASE−RK method
4 nTmethods = length(Tmethod);
5 jacup = 0; % We want ’constant Jacobian’
6 if (jacup == 0)
7 Jac = @jacEulerfix;
8 elseif (jacup == 1)
9 Jac = @jacEuler;
10 end
11
12 % Initial conditions
13 global y0
14 tspan = [0 10];
15 y0 = [1;0;0.9];
16 N = 5000; % Number of grid intervals
17
18 % Compute a reference solution with ode15s
19 options = odeset(’RelTol’,5e−14,’AbsTol’,5e−14);
20 [tode15s,yode15s] = ode15s(@funEuler,tspan,y0,options);
21 YrefT = yode15s(end,:)’;
22
23 [yTTRK,yTRK,t,CPUtimeTRK] = TASERK(N,tspan,y0,Fun,Jac,Tmethod,jacup);
24
25 % Print results
26 format short e
27 errT_TRK = norm(yTTRK−YrefT,inf) % Error
28 CPUtimeTRK % CPU time

We also report the functions funEuler.m, jacEulerfix.m, jacEuler.m, respectively,
which are recalled in the main algorithm. Obviously, funEuler.m returns the (column) vec-
tor field f given in Equation (13) evaluated at a point (t,y). Furthermore, jacEulerfix.m
returns the Jacobian (14) evaluated at the initial grid point. Finally, jacEuler.m returns the
exact Jacobian (14) evaluated at a point (t,y).

Code 3: function funEuler.m.
1 function yp = funEuler(t,y)
2
3 yp(1) = −2*y(2)*y(3);
4 yp(2) = 5/4*y(3)*y(1);
5 yp(3) = −1/2*y(1)*y(2);
6 yp = [yp(1);yp(2);yp(3)];
7
8 end

Code 4: function jacEulerfix.m.
1 function J = jacEulerfix()
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2
3 global y0
4 J = [0 −2*y0(3) −2*y0(2);
5 5/4*y0(3) 0 5/4*y0(1);
6 −1/2*y0(2) −1/2*y0(1) 0];
7
8 end

Code 5: function jacEuler.m.
1 function J = jacEuler(t,y)
2
3 J = [0 −2*y(3) −2*y(2);
4 5/4*y(3) 0 5/4*y(1);
5 −1/2*y(2) −1/2*y(1) 0];
6
7 end

To conclude this subsection, we also report the outputs obtained.

Code 6: outputs of the main code exampleEuler.m.
1 >> exampleEuler
2 errT_TRK =
3 3.3776e−08
4 CPUtimeTRK =
5 6.4062e−01

6.2 Burgers’ equation
In this subsection, we show the application of the function TASERK.m in solving the Burgers’
equation [6, 9], which can be expressed as follows:

∂u
∂ t

= ε
∂ 2u
∂x2 −u

∂u
∂x

, (x, t) ∈ [x0,X ]× [t0, te]. (15)

The function u represents the speed of the fluid at the considered spatial (x) and temporal (t)
coordinates, ε is related to a constant physical property of the fluid, generally the viscosity or
something similar to it. When the diffusion term is absent, this PDE becomes the inviscid Burg-
ers’ equation. Furthermore, Equation (15) can also be expressed in the following conservative
form:

∂u
∂ t

= ε
∂ 2u
∂x2 − 1

2
∂u2

∂x
, (x, t) ∈ [x0,X ]× [t0, te]. (16)

Here, we consider the numerical solution of Equation (16). Regarding the initial conditions,
the spatial semi-discretization and the boundary conditions we mainly refer to [12, Section 3.2].
In particular, we consider as initial conditions the function

y(x,0) =

{
1, x ∈ [0,π],
0, x ∈ (π,2π].

Regarding the spatial semi-discretization of the equation, we take centred finite differences of
order four for both the first and second order spatial derivatives. Then, by fixing the uniform
spatial grid {xn = x0+m∆x;m = 0, ...,M;xM = X}, the semi-discretized Burgers’ equation (16)
reads

y′(t) = εL1y(t)− 1
2

L2y(t)2. (17)
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By calling with (d−2,d−1,d,d1,d2) the significant entries of the sub-, main-, and over-diagonals,
L1 and L2 are the following pentadiagonal Toeplitz matrices:

L1 =
1

12∆x2 (−1,16,−30,16,−1), L2 =
1

12∆x
(1,−8,0,8,−1).

The Jacobian is in this case given by the non-constant matrix

J f = εL1 −L2Y (t). (18)

Here, Y (t) is a square matrix of size M, having in each column the vector y(t). For semi-
discretized PDEs of this form, the diffusion part is mainly responsible for the stiffness of the
problem. Thus, in our code, since we can use a fixed approximation of the Jacobian to lower the
computational cost while maintaining order of TASE-RK methods, if jacup= 0 the function
Jac returns the constant matrix εL1.

We report and describe below the main code, which we have called exampleBurgers.m.
Note that, unlike the Euler’s problem, we now apply all the schemes reported in Table 2. Fur-
thermore, we perform the numerical integration using several values of N; in particular we use
N = 28,29, . . . ,212 time grid points, as can be seen from line 11. From line 13 to line 25, we
set the parameters, initial conditions and spatial semi-discretization of Burgers’ equation. In
the example, we have used ε = 1/10, M = 32 spatial grid points, t0 = x0 = 0, X = 2π , te = 4.
From line 28 to line 30 we also compute, like before, a reference solution by means of the
MATLAB ode15s function. From line 32 to line 46 we apply the selected TASE-RK methods
to the chosen problem, and store the obtained results in the matrices errT_TRK, CPUtime_TRK,
pest_TRK. In particular, the first two matrices contain in column i the absolute errors (at the
last time grid point) and CPU times, respectively, of the TASE-RK method with p = s = i+1.
Each row corresponds to a different value of N. The first row corresponds to the case N = 28,
the last to N = 212. The matrix pest_TRK is constructed in the same way and contains the
estimated order of the methods. However, it has one row less since it is not possible to estimate
the order for the first value of N.

Code 7: main code exampleBurgers.m.
1 %% Main code: exampleBurgers.m
2 Fun = @funBurgers;
3 Tmethod = [20 30 40]; % Select the TASE−RK methods
4 nTmethods = length(Tmethod);
5 jacup = 0; % We want ’constant Jacobian’
6 if (jacup == 0)
7 Jac = @jacBurgersfix;
8 elseif (jacup == 1)
9 Jac = @jacBurgers;
10 end
11 inN = 8; finN = 12; % We do the time integration using 2^(inN),...,2^(finN) time grid points
12
13 global epsilon M L1 L2
14 epsilon = 1/10; M = 32; % Spatial grid points
15 xspan = [0 2*pi]; tspan = [0 4];
16 Deltax = (xspan(2)−xspan(1))/M; % Spatial step−size
17
18 % Initial conditions
19 y0 = []; y0(1:M/2,1) = ones(M/2,1); y0(M/2+1:M,1) = zeros(M/2,1);
20
21 % Space−discetization: order−four FD and periodic BC
22 e = ones(M,1); r = 1/(12*Deltax^2);
23 L1 = spdiags([−r*e 16*r*e −30*r*e 16*r*e −r*e], −2:2, M, M); L1(1,M−1) = −r; L1(M−1,1) = −r;

L1(M,2) = −r; L1(2,M) = −r; L1(1,end) = 16*r; L1(end,1) = 16*r;
24 r = 1/(12*Deltax);
25 L2 = spdiags([r*e −8*r*e 0*r*e 8*r*e −r*e], −2:2, M, M); L2(1,M−1) = r; L2(M−1,1) = −r; L2(M

,2) = −r; L2(2,M) = r; L2(1,end) = −8*r; L2(end,1) = 8*r;
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26
27 % Compute a reference solution with ode15s
28 options = odeset(’RelTol’,5e−14,’AbsTol’,5e−14);
29 [tode15s,yode15s] = ode15s(@funBurgers,tspan,y0,options);
30 YrefT = yode15s(end,:)’;
31
32 for nm = 1:nTmethods % We apply all the selected TASE−RK
33 i = 1;
34 for N = 2.^(inN:finN) % For the simulations done
35 [yTTRK,yTRK,t,CPUtimeTRK] = TASERK(N,tspan,y0,Fun,Jac,Tmethod(nm),jacup);
36 errT_TRK(i,nm) = norm(yTTRK−YrefT,inf); % Error
37 cd_TRK(i,nm) = −log10(errT_TRK(i,nm));
38 CPUtime_TRK(i,nm) = CPUtimeTRK; % CPU time
39 i = i + 1;
40 end
41
42 l = length(cd_TRK(:,nm));
43 for i = 2:l % Compute the estimated order
44 pest_TRK(i−1,nm) = (cd_TRK(i,nm)−cd_TRK(i−1,nm))/log10(2);
45 end
46 end
47
48 % Print results
49 format short e
50 errT_TRK
51 CPUtime_TRK
52 format short
53 pest_TRK

We also report below the function funBurgers.m, which obviously returns the vector
field of the semi-discretized Burgers’ equation (17). Furthermore, we report the functions
jacBurgersfix.m, jacBurgers.m. The latter computes the exact Jacobian, given in Equa-
tion (18). The first returns only the diffusion part.

Code 8: function funBurgers.m.
1 function yp = funBurgers(t,y)
2
3 global epsilon L1 L2
4 yp = epsilon*L1*y − (1/2)*L2*(y.^2);
5
6 end

Code 9: function jacBurgersfix.m.
1 function J = jacBurgersfix()
2
3 global epsilon L1
4 J = epsilon*L1;
5
6 end

Code 10: function jacBurgers.m.
1 function J = jacBurgers(t,y)
2
3 global epsilon L1 L2 M
4 J = epsilon*L1−L2.*repmat(y,1,M)’;
5
6 end

Finally, we report below the outputs obtained by running exampleBurgers.m. Note that,
although we used jacup= 0, the methods maintain their order, as expected from the consistency
analysis done in the paper. This can be seen by looking at the columns of the matrices errT_TRK
and pest_TRK. Indeed, we recall that the first column corresponds to the TASE-RK of order
p = s = 2, the second to the method of order p = s = 3 and the third to the scheme with
p = s = 4. Looking at the matrix with the CPU times, it is evident that the more the number of

D. Conte, G. Pagano, B. Paternoster 16/21

https://github.com/gpagano97/TASE-RK-methods/blob/main/funBurgers.m
https://github.com/gpagano97/TASE-RK-methods/blob/main/jacBurgersfix.m
https://github.com/gpagano97/TASE-RK-methods/blob/main/jacBurgers.m


A MATLAB implementation of TASE-RK methods

grid points N increases and the more the number of stages is high, the greater the computational
effort.

Code 11: outputs of the main code exampleBurgers.m.
1 >> exampleBurgers
2 errT_TRK =
3 3.2141e−04 2.5591e−05 8.8510e−06
4 8.9912e−05 3.9132e−06 9.0181e−07
5 2.3923e−05 5.4871e−07 7.5195e−08
6 6.1825e−06 7.2968e−08 5.5087e−09
7 1.5724e−06 9.4195e−09 3.7483e−10
8 CPUtime_TRK =
9 3.1250e−02 4.6875e−02 6.2500e−02
10 4.6875e−02 1.0938e−01 1.2500e−01
11 1.4062e−01 1.5625e−01 2.6562e−01
12 2.3438e−01 2.9688e−01 5.0000e−01
13 3.4375e−01 6.5625e−01 9.8438e−01
14 pest_TRK =
15 1.8378 2.7092 3.2949
16 1.9101 2.8342 3.5841
17 1.9521 2.9107 3.7708
18 1.9752 2.9535 3.8774

7 Conclusions
In this manuscript, we have analyzed in detail the consistency and stability properties of the
recently introduced TASE-RK methods. Taking advantage of this analysis, we have proposed a
MATLAB implementation of these methods allowing the user to make a flexible choice of the
approximation of Jn to be used. Furthermore, by formulating TASE-RK schemes as linearly
implicit methods, we have employed some MATLAB functions to efficiently solve the under-
lying linear systems, by computing a-priori the LU factorizations of the matrices involved. The
proposed implementation is not limited to the cases of TASE-RK methods with p = s ≤ 4, but
can allow the user to test methods with a higher number of stages and such that p ̸= s.

We were motivated by the growing interest in TASE-RK methods, which are quite promis-
ing in solving large stiff problems, especially coming from the spatial semi-discretization of
PDEs. The results reported on the Euler’s problem and Burgers’ equation testify the correct-
ness of the theoretical analysis and the functioning of the proposed MATLAB code.
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