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Abstract

Procedure NDED computes the numerical derivatives of order ν from equispaced data.
This is based on the iterated application of a spectral algorithm for the computation of the
first order derivative. A preliminary test of the procedure gives satisfactory results.
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1 Introduction
A numerical differentiation problem consists in the computation of the derivative of order ν

of an unknown function from the knowledge of the values of the function at prescribed points.
Numerical differentiation is an interesting topic in many fields of applied sciences, such as
biology, chemistry and physics, and it has a fundamental role in numerical analysis [3], [5],
[21], [23]. For instance, operators approximating derivatives can be used to numerically solve
differential equations [12], [13]. Due to its central role in scientific computing, several nu-
merical differentiation methods are present in the scientific literature [4], [6], [7], [14], [15],
[22], [24], [25]. All the methods for numerical differentiation are generally classified into these
categories: finite difference methods, interpolation methods, regularization methods and inte-
gral methods. Finite difference methods and interpolation methods are well known and have
the advantage of simplicity, moreover, they are considered to give satisfactory results when the
function to be differentiated is given very precisely. Most of the regularization methods make
use of the variational approach. The derivative is written as the solution of a Volterra integral
equation and the resulting integral equation is reduced to a well-posed problem that depends
on a regularization parameter. The main issue with these methods is the determination of the
optimal parameter value that is generally a nontrivial task. Other interesting problems in the
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field of numerical differentiation are the differentiation of multivariate functions [2], [20] and
the numerical differentiation from scattered data [8].

The main difficulty in the numerical differentiation is that small errors in the function data
may cause large errors in the computed derivative, due to the unboundedness of the deriva-
tive operator. However, in practice, data are almost always corrupted by noise and in many
applications it is necessary to estimate the derivative from known noisy data. Thus, proper reg-
ularization schemes are usually considered by methods for numerical differentiation [1], [16],
[17], [18], [19], [26].

We present the procedure NDED for the numerical approximation of the derivatives of
order ν ≥ 1. This procedure is based on a recursive application of an algorithm to compute
first order derivatives from the Singular Value Expansion (SVE) of the derivative operator. In
the present version, the procedure is intended for equispaced univariate data but the structure
of the algorithm is easily generalizable to the cases of irregular grid spacing and multivariate
data. The procedure NDED has been implemented in MATLAB and the “code metadata” are

Current code version v. 1.0
Permanent link to repository https://github.com/josgiac/NumDer.git
Code versioning system used git
Software code languages MATLAB

In Section 2, we summarize the theoretical basis of the proposed algorithm. In Section
3, we give the algorithm and its implementation in MATLAB. In Section 4, we show some
numerical results. In Section 5, we provide conclusions and future developments.

2 Theoretical Background
The proposed algorithm is based on papers [9], [10] and [11], which we summarize in this
section, for the reader’s convenience.

We consider differentiable functions f : I →R defined on a closed interval I; without losing
generality, we can assume that I = [0,1]. The first derivative f (1) of f is the unique solution
w : I → R of ∫ 1

0
K(t,s)w(s)ds = f (t)− f (0), t ∈ [0,1], (1)

which is a Volterra integral equation of first kind having kernel, K : I × I → R,

K(t,s) =
{

1, 0 ≤ s < t ≤ 1,
0, 0 ≤ t ≤ s ≤ 1. (2)

We note that, with K defined as in (2), integral equation (1) is a direct consequence of the
Fundamental Theorem of Calculus, that is, for each t ∈ [0,1],∫ t

0
1 · f ′(s)ds = f (t)− f (0).

In compact notation, equation (1) becomes

K w = f − f0, (3)

where f0 = f (0) and K is the integral operator with kernel defined by (2). This integral
operator K associated with the first order derivatives has a known SVE given by the following
theorem.
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Theorem 1. The SVE of kernel (2) is

K(t,s) =
∞

∑
k=0

µkuk(t)vk(s), t,s ∈ I, (4)

where µk = 2
(2k+1)π , k = 0,1, . . . , are the singular values of K and the singular functions

corresponding to µk are

vk(s) =
√

2cos
(

s
µk

)
, s ∈ I, (5)

uk(t) =
√

2sin
(

t
µk

)
, t ∈ I. (6)

Proof. See [11] for a detailed proof.□
The SVE of K allows the definition of an FFT method to compute the numerical deriva-

tives of a given function starting from its values at prescribed points. Let n > 0 and h = 1/n,
supposing that we know the values of f at n+1 equispaced points

ξ j = jh, j = 0,1, . . . ,n, (7)

that is f j = f (ξ j) are known, then the following theorem gives such a method and the cor-
responding accuracy properties. This theorem considers the approximation of f ′(x j), j =
0,1, . . . ,n−1 where

x j =

(
j+

1
2

)
h. (8)

Moreover, the following notations are used: for j,k = 0,1, . . . ,n−1:

γk =
1
µk

, s̃ j,k = sin
(
γ jξk

)
(9)

c j,k = cos
(
γ jxk

)
, s j,k = sin

(
γ jxk

)
. (10)

Theorem 2. For k = 0,1, . . . ,n−1,

f ′(xk) = f p
k +O(h4), (11)

where

f p
k =

√
2

n−1

∑
j=0

f p
v, jc j,k, (12)

and for j = 0,1, . . . ,n−1,

f p
v, j = α0c j,0 +β j(27s j,0 − s j,1)+αnc j,n, (13)

α0 =

√
2

24
(2 f0 −5 f1 +4 f2 − f3), (14)

αn =

√
2

24
(− fn−3 +4 fn−2 −7 fn−1 +4 fn), (15)

β j =

√
2

24

(
2

n−1

∑
l=1

( fl − f0) s̃ j,l +(−1) j ( fn − f0)

)
. (16)
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Proof. See [10] for details.□
We note that (12) can be computed by the Discrete Fourier Transformation (DFT) of a vec-

tor that depends on f p
v, j, j = 0,1, . . . ,n− 1. Moreover, f p

v, j, j = 0,1, . . . ,n− 1, depend only on
the data fk, k = 0,1, . . . ,n, and (16) can be computed by the DFT. In particular, by using Theo-
rem 2 and the FFT algorithm, in [10] we give two algorithms FOD and NOD. Algorithm FOD
allows calculating the numerical derivative of order 1 by knowing the values of the function in
equally spaced points of a closed interval [a,b], while NOD computes the numerical derivative
of order ν ≥ 1 by using FOD iteratively.

In the next section, we propose a revised version of FOD algorithm, that in some cases
provides more accurate results than the original one.

3 The algorithm
We propose a new algorithm for numerical differentiation based on the following formulas.
The algorithm has been coded in MATLAB, the current code version (v. 1.0) is available at
https://github.com/josgiac/NumDer.git where the git code versioning system is used.

Let f : I → R be a sufficiently regular function, by following the proof of Theorem 3.2 in
[10], we can prove that, for k = 0,1, . . . ,n−1,

f ′(xk) = f̃ p
k +O(h4), (17)

where

f̃ p
k =

√
2

n−1

∑
l=0

f̃ p
v,lcl,k, (18)

and for j = 0,1, . . . ,n−1,

f̃ p
v, j = α̃0c j,0 +β j(27s j,0 − s j,1)+ α̃nc j,n, (19)

α̃0 =

√
2

1920
(311 f0 −1075 f1 +1510 f2 −1110 f3 +435 f4 −71 f5), (20)

α̃n =

√
2

1920
(471 fn −1235 fn−1 +1510 fn−2 −1110 fn−3 +

+435 fn−4 −71 fn−5), (21)

where we recall that β j, j = 0,1, . . . ,n−1, are given by (16). We consider the following more
general problem where the sampled function F is defined on a closed interval J not necessarily
equal to I, that is the domain of f . We suppose that ν ,n ∈ N, ν ≥ 1 and n ≥ ν + 2 and that
F : J → R, with J = [a,b] ⊂ R and a < b, is a sufficiently regular function on the closed
interval J of R. Let L = b−a, h = 1/n and m = n−ν +1, then for i = 1,2, . . . ,ν , we consider
the following points in J:

x(i)k = a+hL
(

k+
i
2

)
, k = 0,1, . . . ,n− i, (22)

ξ
(i)
j = a+hL

(
j+

i−1
2

)
, j = 0,1, . . . ,n− i+1. (23)

We note that x(1)k = a+ xkL for k = 0,1, . . . ,n−1 and ξ
(1)
j = a+ξ jL for j = 0,1, . . . ,n.
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Suppose that we know the values of F at the n+ 1 uniformly distributed points ξ
(1)
j , j =

0,1, . . . ,n, of J, the corresponding function data are f = ( f0, f1, . . . , fn) ∈ Rn+1, where

f j = F(a+ξ jL), j = 0,1, . . . ,n. (24)

We note that the vector of samples f may be considered as obtained from the function f (t) =
F((b− a)t + a)) defined for t ∈ I, moreover f ′(t) = (b− a)F ′((b− a)t + a)). The proposed
Algorithm 1, for k = 0,1, . . . ,m−1, computes the approximation D(ν)

k of F(ν)
(

x(ν)k

)
.

Algorithm 1 (ν-order derivative) NDED
(

a,b,n,ν , f ;D(ν)
)

Input: a,b ∈ R; n,ν ∈ N; f = ( f0, f1, . . . , fn) ∈ Rn+1.
Output: D(ν) = (D0,D1, . . . ,Dm−1) ∈ Rm, m = n−ν +1.

for l = 0, . . . ,n−1 do
Compute the quantity f̃ p

v,l by using formula (19)
end for
for k = 0, . . . ,n−1 do

Compute f̃ p
k by using formula (18)

Compute D(1)
k =

f̃ p
k

b−a
end for
for l = 2,3, . . . ,ν do

m = n− l +1;
Compute D(l) ∈ Rm by NDED

(
ξ
(l)
0 ,ξ

(l)
m ,m,1,D(l−1);D(l)

)
end for
return D(ν)

We note that the FFT algorithm is used for computing formulae (19) and (18).

3.1 MATLAB implementation
Algorithm 1 has been implemented in MATLAB, here we illustrate the corresponding function.

• Syntax. [d, ifail] = NumDerEquispacedData(a,b,nu, f )

• Purpose. Compute the derivatives of a function F starting from its values at uniformly
distributed points.

• Description. [d, ifail] = NumDerEquispacedData(a,b,nu, f ), given a vector f contain-
ing the n+1 values of function F at

ξ
(1)
k = a+ k

b−a
n

, k = 0,1, . . . ,n,

computes d = (d1,d2, . . . ,dm) the derivatives of order ν = nu of F at

x(nu)
k = a+

(
k+

nu
2

) b−a
n

, k = 0,1, . . . ,m−1, m = n−nu+1,

with Algorithm 1.
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• Parameters.

– input a,b - double scalar. The closed interval [a,b] is the domain of F . Constraints:
a < b.

– input nu - integer scalar. The value of nu is the order of the searched derivatives.
Constraints: nu ≥ 1.

– input f - double vector with n+1 components. f ( j+1) must contain the quantity
F (a+ j(b−a)/n), j = 0,1, . . . ,n. Constraints: n ≥ nu+2.

– output d - double vector with m = n− nu+ 1 components. d( j+ 1) contains the
approximation of

F(nu)
(

a+
(

j+
nu
2

) b−a
n

)
, j = 0,1, . . . ,m−1.

– output ifail – integer scalar, ifail = 0 unless the function detects an error (see Error
Indicators and Warnings).

• Error Indicators and Warnings. Here is the list of errors or warnings detected by the
function:

– ifail = 1 - on entry a ≥ b or nu ≤ 0.

– ifail = 2 - the method cannot be applied because n < nu+2.

4 Numerical results
The performance of the proposed algorithm is tested against the following three functions:

• F1(x) = 1
1+x2 , x ∈ [0,1],

• F2(x) = cos
(
(1+ x)2

)
, x ∈ [0,1],

• F3(x) = ex, x ∈ [−0.1,0.5].

We note that the first two functions are the same test functions chosen in [10] and are used for
the comparison of the two algorithm versions. Let

• f (ν)k be the ν-derivative of F at x(ν)k , k = 0,1, . . . ,n−ν ,

• f̂ (ν)k be a computed approximation of f (ν)k , k = 0,1, . . . ,n−ν ,

We consider the following performance indices:

e f =
∣∣∣ f (1)0 − f̂ (1)0

∣∣∣ , el =
∣∣∣ f (1)n−1 − f̂ (1)n−1

∣∣∣ , (25)

E∞ = max
0≤k≤n−ν

∣∣∣ f (ν)k − f̂ (ν)k

∣∣∣ , (26)

EI
∞ = max

1≤k≤n−ν−1

∣∣∣ f (ν)k − f̂ (ν)k

∣∣∣ , (27)

Er =

√√√√√√∑
n−ν

k=0

(
f (ν)k − f̂ (ν)k

)2

∑
n−ν

k=0

(
f (ν)k

)2 . (28)
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The numerical results related to algorithm NDED have been obtained by using the MATLAB
Script Test that uses NumDerEquispacedData.

The results of this test are reported in Tables 1-4 and Fig. 1. In particular, in Tables 1 and
2, we can see that, for both functions F1 and F2, the values of e f and el obtained by NDED
are significantly lower than those obtained with NOD. This shows that new formulae (19)-
(21) actually give an improved approximation at the extremes of the computation interval with
respect to the formula implemented in NOD, without changing the performance at the internal
points, indeed, the errors EI

∞ computed with NDED are the same of those computed with NOD.

Table 1: The comparison of the absolute errors e f and el for the first derivative of function F1
obtained with NOD and NDED, where x(z) denotes the real number x ·10z.

h
NOD NDED

e f el EI
∞ e f el EI

∞

4.00(−2) 6.18(−5) 9.92(−6) 1.20(−6) 1.90(−6) 1.27(−7) 1.20(−6)
2.00(−2) 7.93(−6) 1.12(−6) 7.53(−8) 7.04(−8) 4.50(−9) 7.53(−8)
1.00(−2) 9.98(−7) 1.32(−7) 4.71(−9) 2.29(−9) 1.45(−10) 4.71(−9)

Table 2: The comparison of the absolute errors e f and el for the first derivative of function F2
obtained with NOD and NDED, where x(z) denotes the real number x ·10z.

h
NOD NDED

e f el EI
∞ e f el EI

∞

4.00(−2) 1.33(−4) 7.66(−4) 1.07(−5) 7.38(−7) 1.20(−5) 1.07(−5)
2.00(−2) 1.54(−5) 9.92(−5) 6.69(−7) 7.32(−9) 5.23(−7) 6.69(−7)
1.00(−2) 1.84(−6) 1.26(−5) 4.18(−8) 1.93(−11) 1.87(−8) 4.18(−8)

Table 3 and Table 4 report the errors obtained by NDED, in particular, they show the errors
in the numerical derivatives of order ν ≥ 1 with h = 1/100, but similar behaviors are obtained
for a different choice of h. From these tables, we can see that the precision decreases as the
order of the derivative increases, which suggests that the algorithm needs a more in-depth study
to limit, as far as possible, this natural behavior.

Table 3: The errors obtained by computing with NDED the derivatives of order ν = 1,2,3 of
functions F1 and F2 with step h = 1/100, where x(z) denotes the real number x ·10z.

ν
F1 F2

E∞ Er E∞ Er
1 4.71(−9) 4.67(−9) 4.18(−8) 1.20(−8)
2 1.57(−7) 3.16(−8) 6.56(−7) 2.53(−8)
3 2.00(−5) 7.03(−7) 7.81(−5) 4.56(−7)
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Table 4: The errors obtained by computing with NDED the derivative of order ν of function F3
with step h = 1/100, where x(z) denotes the real number x ·10z.

ν 1 2 3 4 5
E∞ 8.71(−12) 1.77(−9) 2.69(−7) 4.19(−5) 6.80(−3)
Er 5.58(−12) 1.56(−10) 2.43(−8) 4.16(−6) 9.05(−4)

Finally, in Figure 1 we have the graph of F(2)
2

(
x(2)k

)
,k = 0,1, . . . ,n−2, its approximation

D(2)
k , k = 0,1, . . . ,n−2, and the corresponding error Ek =D(2)

k −F(2)
2

(
x(2)k

)
, k = 0,1, . . . ,n−2,

when the approximation is computed with NDED and h = 1/25. Figure 1 gives graphical
evidence of the accuracy of the derivative approximation obtained by NDED, even with few
data points.

Figure 1: On the left, the graph of the second derivative of F2 and its approximation computed
with NDED and h = 1/25. On the right, the corresponding error Ek = D(2)

k − F(2)
2

(
x(2)k

)
,

k = 0,1, . . . ,n−2.
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5 Conclusion
In the present paper, we described the procedure NDED for the numerical computation of
the derivative of order ν , starting from function data obtained at n+ 1 uniformly distributed
points on an interval [a,b]. This procedure is based on a recursive application of a numerical
method to compute the first order derivative with an error O(h4). The procedure NDED has
been implemented in MATLAB and the current code version is available on github. The current
code version (v. 1.0) of the NDED procedure gives satisfactory results for equispaced univariate
data. The next versions will be able to consider scattered function data and multivariate function
data.
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