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Abstract
We discuss a “bottom-up” algorithm for Tchakaloff-like compression of QMC (Quasi-

MonteCarlo) integration on surfaces that admit an analytic parametrization. The key tools
are Davis-Wilhelmsen theorem on the so-called “Tchakaloff sets” for positive linear func-
tionals on polynomial spaces, and Lawson-Hanson algorithm for NNLS. This algorithm
shows remarkable speed-ups with respect to Caratheodory-like subsampling, since it is
able to work with much smaller matrices. We provide the corresponding Matlab code
Qsurf, together with integration tests on regions of different surfaces such as sphere, torus,
and a smooth Cartesian graph.

Keywords: Quasi-MonteCarlo formulas, surface integrals, analytic parametrization, low-
discrepancy sequences, rejection sampling, Tchakaloff sets, quadrature compression, Davis-
Wilhelmsen theorem, NonNegative Least Squares. (MSC2020: 65C05, 65D32)

1 Introduction
In the recent study [14], we have considered the compression problem for Quasi-MonteCarlo
(QMC) surface integration on multibubbles (the surface of a ball union in R3), which can have
a quite complicated structure. Indeed, numerical modelling with multibubbles is relevant in
several applications, but compression of QMC integration seemed an overlooked approach,
especially in the case of surface integrals.

In this paper, we extend such an approach to compressed QMC formulas for general inte-
gration problems on compact subsets of surfaces in R3, admitting an analytic parametrization.
Such formulas preserve the approximation power of QMC up to the best uniform polynomial
approximation error of a given degree to the integrand, but using a much lower number of
sampling points.
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The key tools are Davis-Wilhelmsen theorem on the so-called “Tchakaloff sets” for positive
linear functionals and Lawson-Hanson algorithm for NNLS, which allows to extract a set of
“equivalent” re-weighted nodes from a huge uniformly distributed sequence with respect to the
surface measure, by working in a “bottom-up” mode. Such a sequence can be obtained for
example from a bivariate Halton sequence by an area-preserving map, when available, or by
the probabilistic method of rejection sampling, which has been extended to the low-discrepancy
deterministic setting, cf. e.g. [20, 31]. On the other hand, there are other relevant QMC point
sequences on manifolds, see e.g. [2, 3].

The “bottom-up” approach shows remarkable speed-ups with respect to Caratheodory-like
subsampling (cf. e.g. [16, 19, 21, 25, 29]), since it is able to work with much smaller matrices.
We stress that one of the main difficulties consists in adapting the compression algorithm to
work on the appropriate spaces of trivariate polynomials restricted to the surface, since the
dimension of trivariate polynomial spaces can collapse in the case of algebraic surfaces.

The paper is organized as follows. In Section 2 we briefly discuss the theoretical back-
ground and the main idea of the “bottom-up” compression algorithm. Then, we sketch the
algorithm, that has been implemented in Matlab, and comment on the main computational is-
sues. Finally, in Section 3 we present some numerical examples concerning regions of sphere
and torus, and the Cartesian graph of an analytic function. All the codes and demos are all
freely available at [15].

2 QMC compression on surfaces
The possibility of compressing QMC integration rests on a somehow overlooked but relevant
result of quadrature theory, originally proved by Davis [5] and then extended by Wilhelmsen
[30]. Only recently this theorem has been rediscovered as a basic tool for positive cubature via
adaptive NNLS moment-matching, cf. [13, 18, 26, 27].
Theorem 1. (Davis, 1967 - Wilhelmsen, 1976) Let { f j}1≤ j≤N be continuous, real-valued, lin-
early independent functions defined on a compact set Ω ⊂ Rd , and F = span( f1, . . . , fN).
Assume that F satisfies the Krein condition (i.e. there is at least one f ∈ F which does not
vanish on Ω) and that L is a positive linear functional on F , i.e. L( f ) > 0 for every f ∈ F ,
f ≥ 0 not vanishing everywhere in Ω.

If {Pi}∞
i=1 is an everywhere dense subset of Ω, then for sufficiently large m, the set Xm =

{Pi}i=1,...,m is a “Tchakaloff set”, i.e. there exist weights wk > 0, k = 1, . . . ,ν , and nodes
{Zk}k=1,...,ν ⊂ Xm ⊂ Ω, with ν = card({Zk})≤ N, such that

L( f ) = ℓ( f ) =
ν

∑
k=1

wk f (Zk) , ∀ f ∈ F . (1)

Davis-Wilhelmsen theorem is a constructive generalization of the well-known Tchakaloff
theorem [28] on the existence of positive quadrature formulas. But, just in view of its generality,
it can be directly applied to a discrete functional like a QMC formula on Ω = J , J being a
compact region of a surface S ⊂ R3

L( f ) = LQMC( f ) =
σ(J )

M

M

∑
i=1

f (Pi)≈
∫
J

f dσ , f ∈C(J ) , (2)

where
XM = {Pi}i=1,...,M , M > N ,
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is a uniformly distributed sequence on J and σ is the surface measure. Typically one generates
a uniformly distributed sequence of cardinality say M0 on the bounding surface S ⊇ J , from
which sequence on J is extracted by a suitable in-domain algorithm. We observe that if σ(J )
is unknown or difficult to compute, it can be approximated as σ(J )≈ σ(S )M/M0.

Positivity of the functional for f ∈ F = P3
n(J ) (the space of trivariate polynomials of

total degree not exceeding n restricted to J ), is ensured whenever the set XM is P3
n(J )-

determining, i.e. a polynomial vanishing there vanishes everywhere on J , or equivalently
dim(P3

n(XM)) = N = dim(P3
n(J )), or even

rank(VM) = N , VM =V (n)(XM) = [ f j(Pi)] ∈ RM×N (3)

where VM is the corresponding rectangular Vandermonde-like matrix. Notice that, XM being a
sequence, for every k ≤ M we have that

Vk =V (n)(Xk) = [(VM)i j] , 1 ≤ i ≤ k , 1 ≤ j ≤ N . (4)

We stress that the full rank requirement for VM is not restrictive, in practice, when S is a
surface that admits an analytic parametrization, the subset J is P3

n(S )-determining and the
points are uniformly distributed with respect to the surface measure. Indeed, the probability that
det(VN) = 0 dealing with uniformly distributed points is null, as is ensured by the following
proposition which is a special case of a general result proved in [7] in the case of continuous
random point distributions.

Proposition 1. Let S ⊂ R3 be a surface that admits an analytic parametrization P = Ψ(u,v)
from a connected open set D ⊂ R2, i.e. Ψ = (Ψ1,Ψ2,Ψ3) where Ψi : D → R3 are analytic and
Ψ(D) = S . Moreover, let { f j}1≤ j≤N be a basis of P3

n(S ) and {(ui,vi)}i≥1 an equidistributed
sequence on D with respect to any given probability density φ(u,v).

Then, the points {Pi = Ψ(ui,vi)}1≤i≤N are almost surely unisolvent for polynomial interpo-
lation in P3

n(S ).

Remark 1. We can apply this proposition to the case where the parametrization is regular
(so that the surface area element ∥∂uΨ×∂vΨ∥2/σ(J ) is well-defined), dim(P3

n(S )) = N =
dim(P3

n(J )), and dσ = φ(u,v)dudv with density

φ(u,v) = IJ (Ψ(u,v))∥∂uΨ×∂vΨ∥2/σ(J ) , (5)

IJ denoting the indicator function of J .

Remark 2. To be rigorous, we should notice that Proposition 1 concerns random sequences,
whereas here we deal with quasi-random sequences, where we can expect, and we have indeed
verified experimentally, that the full-rank property of VM in practice holds. In order to con-
struct a sequence {Pi}1≤i≤N that be uniformly distributed on J with respect to the surface
measure, we can adopt the classical probabilistic method of rejection sampling on D applied
to the density (5), that has been extended to low-discrepancy sequences; cf. [20, 31] with the
references therein. Clearly, a suitable “in-domain” algorithm for J has to be at hand.

Remark 3. We recall that polynomial spaces can collapse on algebraic surfaces, i.e. it happens
that dim(P3

n(J )) = dim(P3
n(S )) < dim(P3

n(R3)) = (n+ 1)(n+ 2)(n+ 3)/6. For example,
if J is a subset with internal points w.r.t. the topology of the sphere S2 (e.g. a spherical
polygon as in the first example below), we have that dim(P3

n(J )) = dim(P3
n(S

2)) = (n+1)2;
we refer the reader, e.g., to [4] concerning the delicate matter of determining polynomial spaces
dimension on algebraic varieties.
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In view of the results quoted above, when M ≫ N we can then try to find a Tchakaloff set
Xm ⊂ XM, with N ≤ m < M, such that there exists a sparse nonnegative solution vector u to the
underdetermined moment-matching system

V t
mu = λ =V t

Me , e =
σ(J )

M
(1, . . . ,1)t . (6)

In practice, we solve (6) via Lawson-Hanson active-set method [17] applied to the NNLS
problem

min
u≥0

∥V t
mu−λ∥2 , (7)

accepting the solution when the residual size is small, say

∥V t
mu−λ∥2 < ε (8)

where ε is a given tolerance. Then the nonzero components of u provide nodes and weights of
a compressed QMC formula extracted from Xm, that is {wk} = {ui : ui > 0} and {Zk} = {Pi :
ui > 0}, giving

ℓQMC( f ) =
ν

∑
k=1

wk f (Zk) , ν ≤ N ≪ M , (9)

where ℓQMC( f ) = LQMC( f ) for every f ∈ P3
n(J ).

It is worth recalling that, in the case m = M, Caratheodory theorem on finite-dimensional
conic combinations (applied to the columns of V t

M) would ensure directly the existence of a
Tchakaloff-like representation of the QMC functional (cf. [21] for a discussion on this point
in the general framework of discrete measure compression by “Caratheodory-Tchakaloff sub-
sampling”). In such a way, however, working with say an order of 105 −106 nodes, we would
have to manage a huge matrix, that is we would have to solve the huge NNLS problem

min
u≥0

∥V t
Mu−λ∥2 . (10)

On the contrary, we can substantially reduce the computation cost by solving an increasing
sequence of much smaller problems like (7) with m := m1,m2,m3, . . . and m1 < m2 < m3 <
· · · ≤ M,

min
u≥0

∥V t
m j

u−λ∥2 , j = 1,2,3, . . . , m1 ≥ N , (11)

corresponding to increasingly dense subsets Xm1 ⊂ Xm2 ⊂ ·· · ⊆ XM, until the residual becomes
sufficiently low. We may call this procedure a “bottom-up” approach to QMC compression.
Indeed, as shown in [13], with a suitable choice of the sequence {m j} the residual becomes
extremely small in few iterations, with a substantial speed-up with respect to (10).

Now, following [13] it is easy to derive the following error estimate

|ℓQMC( f )−
∫
J

f dσ | ≤ EQMC( f )+2 µ(J )En( f ;XM)

≤ EQMC( f )+2 µ(J )En( f ;J ) , (12)

valid for every f ∈ C(J ), where EQMC( f ) = |LQMC( f )−
∫
J f dσ | and we define En( f ;K) =

infp∈P3
n(K) ∥ f − p∥∞,K with K discrete or continuous compact set.

The meaning of (12) is that the compressed QMC functional ℓQMC retains the approxima-
tion power of the original QMC formula, up to a quantity proportional to the best polynomial
approximation error to f in the uniform norm on XM (and hence by inclusion in the uniform
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norm on J ). We recall that the latter can be estimated depending on the regularity of f by
multivariate Jackson-like theorems, cf. e.g. [22] for volume integrals where J is the closure
of a bounded open set and [23] for the case of the sphere. On the other hand, we do not deepen
here the topic of QMC convergence and error estimates, in particular on manifolds, referring
the reader to specific papers and monographs, like e.g. [2, 3, 12] .

2.1 Algorithm description and computational issues
In this section we sketch the method implementation in the form of a pseudo-code and discuss
its main computational features.

Algorithm Qsurf: Bottom-up compression of QMC integration on a compact subset J of a
surface S ⊂ R3 with a regular analytic parametrization on a domain D ⊂ R2

• input: the bounding surface measure σ(S ), possibly the measure σ(J ), the cardinal-
ity M0 of a uniformly distributed sequence on S , the cardinality increase factor θ > 1,
the moment-matching tolerance ε , the residual decrease threshold τ > 1

(i) generate M0 low-discrepancy points on the bounding surface S ⊇ J (for example by
rejection sampling on D w.r.t. the surface measure density) and extract the points X =
XM = {Pi}i=1,...,M that lie on J (by a suitable “in-domain” algorithm)

(ii) if unknown, approximate σ(J ) as σ(J ) := σ(S )M/M0

(iii) % selecting a basis of P3
n(X)

(iii1) take a polynomial basis {p1, . . . , pV } of P3
n, V = (n+1)(n+2)(n+3)

6

(iii2) compute the Vandermonde-like matrix C := [p j(Pi)] ∈ RM×V

(iii3) compute N := rank(CV ) where CV = [(C)i j], 1 ≤ i, j ≤ V

(iii4) compute the QR factorization with column pivoting Cπ

V =QR where π =(π1, . . . ,πV )
is the column permutation vector

(iii5) set VM := [(C)i j], 1 ≤ i ≤ M, j = π1, . . . ,πN

(iv) compute the QMC moments λ :=V t
Me, e = σ(J )/M (1, . . . ,1)t

(v) % bottom-up QMC compression

(v1) initialize m, N ≤ m ≪ M and momtype := 0

(v2) set Vm := [(VM)i j], 1 ≤ i ≤ m, 1 ≤ j ≤ N

(v3) compute the QR factorization Vm = QmRm

(v4) if momtype = 0 then

– compute the modified QMC moments qm = (R−1
m )tλ by solving the system Rt

mqm =
λ via Gaussian elimination with row pivoting

– set Am = Qm

else
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– compute the modified QMC moments qm = (R−1
m )tλ = (VMR−1

m )te as qm :=At
Me, by

solving the matrix equation Rt
mAt

M =V t
M via Gaussian elimination with row pivoting

– set Am = [(AM)i, j], 1 ≤ i ≤ m, 1 ≤ j ≤ N

(v5) compute a sparse solution u to the NNLS problem

min
u≥0

∥At
mu−qm∥2

by Lawson-Hanson active-set algorithm

(v6) compute the relative residual res := ∥V t
mu−λ∥2/∥λ∥2

(v7) if res0/res > τ & m < M then
(v7a) if momtype = 0 then

- set momtype := 1 and goto (v2)
else
- set m := M and goto (v2)

(v8) if res > ε &⌈θm⌉ ≤ M then
- set m := ⌈θm⌉, res0 := res and goto (v2)

(vi) select the indexes J = {i : ui > 0} and set w := u(J) and Z := X(J)

• output: the weights {wk} and nodes {Zk} ⊂ X of a compressed QMC formula on J
with moment-matching residual res

Now, some observations on delicate aspects are in order. Step (iii) is a key point in the case
of surface integration. As for the starting polynomial basis, for conditioning problems we adopt
the product Chebyshev total-degree basis of the smaller bounding box say [a1,b1]× [a2,b2]×
[a3,b3]⊃ X , namely

p j(x,y,z) = Tα1( j)(σ1(x)) ·Tα2( j)(σ2(y)) ·Tα3( j)(σ3(z)), j = 1, . . . ,V ,

σi : [ai,bi] 7→ [−1,1] , σi(t) =
2t −bi −ai

bi −ai
, i = 1,2,3 ,

where j 7→ α( j) corresponds to the graded lexicographical ordering of the 3-indexes α =
(α1,α2,α3), 0 ≤ α1 +α2 +α3 ≤ n.

Moreover, we recall that dim(P3
n(X)) is simply the rank of the corresponding rectangular

Vandermonde-like matrix C. In step (iii4), instead, we work with the principal square submatrix
CV . As already observed in Section 2, with V ≥ dim(P3

n(J )) uniformly distributed points on
J , the probability that such a rank be lower than dim(P3

n(J )) is null, so that “almost-surely”
Wilhelmsen theorem applies. In Matlab, one can use directly the built-in function rank based
on an economy-size version of SVD. Notice that we are using a numerical rank (obtained by
discarding the singular values below a tolerance close to machine precision), not the true rank.
Nevertheless, dealing with polynomials restricted to X this is numerically equivalent to work,
up to very small errors, with the true polynomial space. We stress that when V ≪ M, using CV

instead of C gives experimentally a substantial speed-up to the rank computation, by a factor
roughly of the order of M/V .

The polynomial basis selection, i.e. the determination of a set of linearly independent poly-
nomials on J within the starting basis, is performed in (iii4) by a QR factorization with
column pivoting of the Chebyshev-Vandermonde matrix CV (again, an economy-size version
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can be used in Matlab that produces only the first N columns of Q and a column permuta-
tion vector). In such a way we select a polynomial basis of P3

n(X) by the first N components
π1, . . . ,πN of the column permutation, say ( f1, . . . , fN) = (pπ1, . . . , pπN ).

We can now turn to the second key step of the algorithm, that is the extraction of a com-
pressed QMC formula in (v). As already observed, this is based on Wilhelmsen theorem, using
just XM as extraction set, in a “bottom-up” fashion. This procedure avoids working directly on
the complete matrix VM (cf. (10)), as done instead in other previous approaches to QMC com-
pression like [6], cf. also the discussion in [1, 13]. Indeed, the overall number of points, i.e. of
rows of VM, can be huge, up to the order of 105 −106. In practice, we proceed along increas-
ingly dense subsequences of the overall sequence, solving the corresponding NNLS problems
and stopping when the relative moment-matching residual becomes sufficiently small.

To this purpose the classical Lawson-Hanson iterative method turns out to be a good choice,
since it automatically seeks a sparse solution with a number of nonzeros not exceeding N. The
method is implemented in most numerical programming environments, e.g. in Matlab by the
built-in function lsqnonneg. On the other hand, there are improvements of the algorithm,
cf. for example [24] for a survey, and the recent implementation named LHDM based on
the concept of “Deviation Maximization” instead of “column pivoting” for the underlying QR
factorizations, cf. [8, 9]. Indeed, in the present framework we have adopted LHDM, since it
gives experimentally a speed-up of at least 2 with respect to lsqnonneg.

In order to cope ill-conditioning of the matrices used in the sequence of NNLS problem,
that worsens increasing the degree, we perform an orthogonalization of Vm by QR factorization,
that corresponds to work with the discrete orthogonal basis ( f1, . . . , fN)R−1

m . Such a basis is
orthogonal with respect the counting measure supported at X , i.e. with respect to the discrete
scalar product ⟨ f ,g⟩Xm = ∑

m
i=1 f (Pi)g(Pi). Consequently, the original QMC moments have to

be modified as in (v4).
It should be stressed that, due to the inherited ill-conditioning of the triangular factor Rm by

Vm, that increases with the degree, explicit inversion of Rm in (v4) is avoided by solving linear
systems via Gaussian elimination with row pivoting (that is in Matlab simply by applying the
backslash operator).

We also notice that the complete matrix VM is used only to compute the QMC moments
in (iv), unless (v7a) has to be followed due to a residual decrease factor below the required
threshold. Such a phenomenon turns out to occur seldom with high degrees and strong ill-
conditioning. In such a case, computation of AM = VMR−1

m becomes the computational bulk
slowing down the whole process.

3 Numerical tests and demos
In order to show the effectiveness of the bottom-up compression procedure of QMC surface
integration, we present some numerical tests, where we compare “Caratheodory-Tchakaloff”
compression of multivariate discrete measures as implemented in the general-purpose package
dCATCH [10], with the bottom-up approach described above. The Matlab codes and demos,
collected in a package named Qsurf, are freely available at [15].

In all the tests we have set the parameters of the algorithm to ε = 10−10, θ = 2, τ = 10, and
m has been initialized to 2N. The tests have been performed with a CPU AMD Ryzen 5 3600
with 48 GB of RAM, running Matlab R2022a.

We point out that in all the numerical experiments we have adopted Halton points but alter-
natively the software provides the usage of other sequences (e.g. Sobol sets).
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3.1 Sphere region
In the first example we consider a large region J of the sphere, namely a spherical polygon
(a polygon whose vertices are on the sphere and whose sides are great circle arcs) representing
an approximation of continental Africa (see Fig. 1). In this case it is convenient to choose a
spherical cap (say C ⊃ J ) centered at the polygon centroid as bounding surface, S = C , and
we can apply a rotation to the sphere in such a way that the centroid is at the north pole (this
does not clearly affect surface integration on the region).

The indicator function of J can be easily implemented by stereographic projection from
the south pole on the tangent plane at the north pole, that generates a planar polygon for which
the Matlab inpolygon works quite efficiently. Observe that this procedure can be applied to
any rotated spherical polygon that does not contain the south pole.

Then, we can parametrize the polar cap by the area-preserving map (i.e., ∥∂uΨ×∂vΨ∥2 = 1)

Ψ(u,v) = r(
√

1−u2 cos(v),
√

1−u2 sin(v),u) , (13)

(u,v)∈D=(c,1)×(0,2π), where r is the sphere radius and c is the z-quote of the cap boundary
(in practice, working with the open rectangle D we loose the Greenwich 0-meridian arc cutting
the cap, that has null surface measure and thus surface integration is not affected).

Now, starting from low-discrepancy points in D, e.g. Halton points, we get low-discrepancy
points on the cap S and finally on the spherical polygon J . On the other hand, Proposition 1
substantially applies since the map Ψ is analytic and regular on D (see also Remarks 1-2), and
hence we can resort to the bottom-up algorithm Qsurf in order to compress QMC integration
on a huge number M of mapped low-discrepancy points in J . To the purpose of illustration,
in Figure 1 we show the distribution of 64 compressed QMC points extracted from about 2400
Halton points, still matching the QMC moments on J , up to degree 7.

In Table 1 we report the results obtained by applying the QMC compression with more than
one million points on the spherical polygon, taking degrees n = 3,6,9,12,15, and accepting (8)
with a tolerance ε = 10−10. In particular, we display the cardinalities and compression ratios,
the cpu-times for the construction of the low-discrepancy sequence (cpu Halton seq.) and those
for the computation of the compressed rules.

The advantage of the new approach is two-fold, since in all the tests an inferior cputime
with respect to dCATCH is required to determine the compressed rule and, differently from
dCATCH, the solution of (7) always satisfies the moment residual criterion (8). In addition,
less memory is necessary due to the inherent structure of the bottom-up approach, which works
on much smaller matrices.

Finally, in Table 2, we approximate the integrals
∫
J gk dσ on three test functions, namely

setting P = (x,y,z)

g1(P) = exp(−∥P−P0∥2) (14)
g2(P) = cos(x+ y+ z) (15)
g3(P) = ∥P−P0∥5

2 (16)

P0 being the centroid of the spherical polygon J . The reference values of the integrals have
been computed by a QMC rule with very high cardinality (more than 20 million points). We
display the relative errors of the QMC rule with more than one million points and of the two
proposed compressions. As expected from estimate (12), by increasing the QMC moment-
matching degree the errors tend to stabilize around the underlying QMC error.
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Figure 1: 64 compressed QMC points (red) at exactness degree n = 7, extracted from about
2400 mapped Halton points (blue) on the surface of a spherical polygon approximating conti-
nental Africa.

3.2 Torus region
The second example concerns surface integration on a region J of a torus T , corresponding
to a section by a plane, excluding the points that are internal to a ball intersecting the torus;
see Fig. 2. In particular, we consider the torus with center (0,0,0) and radii r = 2, R = 3,
cut by the ball B((0,4,0),

√
6) and the upper half-space of R3 w.r.t. the plane of equation

−x/4+ y+4z = 0.
In this case it is not straightforward to apply a standard integrator, since one should track

the domain Ψ−1(J ) in D and then apply there a suitable cubature rule. On the contrary,
QMC integration can be more easily constructed by rejection sampling in standard toroidal
coordinates (here the bounding surface S = T is the whole torus)

Ψ(u,v) = ((R+ r cos(u))cos(v),(R+ r cos(u))sin(v),r sin(u)) , (17)

(u,v) ∈ D = (0,2π)× (0,2π), where R and r are the big and small torus radii respectively, and
∥∂uΨ×∂vΨ∥2 = r(R+ r cos(v)). Observe that considering the open rectangle Ω we loose the
possible intersection of J with two circles, that have null surface measure and do not affect
surface integration. Moreover, the indicator function of J can be implemented by the simple
inequalities that describe an half-space determined by the cutting plane, and the interior of the
ball. Again, the map Ψ is analytic and regular so that Proposition 1 with Remarks 1-2 applies
and algorithm Qsurf can be used. In Figure 2 we show the distribution of 64 compressed QMC
points, extracted from about 8000 mapped Halton points after selection by rejection sampling
w.r.t. the surface measure density, still matching the QMC moments on J up to degree 7.

In Table 3 we again report the results obtained by applying QMC compression with more
than one million points on the region J . As for the spherical polygon, we consider degrees
n = 3,6,9,12,15, accepting (8) with a tolerance ε = 10−10. In all the tests an inferior cputime
is required by Qsurf to determine the compressed rule and, while dCATCH fails for degree
n = 15. Moreover, the solution by the new approach to (7) always satisfies the moment residual
criterion (8).
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deg 3 6 9 12 15
card. QMC M = 1,184,341

card. dCATCH 16 49 98 165 239
card. Qsurf 16 49 100 169 256
compr. ratio 7.4e+04 2.4e+04 1.1e+04 7.0e+03 4.6e+03

cpu Halton seq. 4.53e+01s
cpu dCATCH 4.1e+00s 1.5e+01s 4.6e+01s 1.3e+02s 3.1e+02s

cpu Qsurf 3.8e-01 1.2e+00s 3.1e+00s 6.4e+00s 1.3e+01
speed-up 10.8 12.5 14.8 20.3 23.8

mom. resid. dCATCH 4.3e-12 4.3e-12 ⋆ 2.9e-04 ⋆ 6.2e-04 ⋆ 2.0e-03
mom. resid. Qsurf

iter. 1 3.7e-16 8.5e-01 2.9e+01 7.9e+01 1.4e+01
iter. 2 6.5e-02 1.7e-04 3.8e-02 7.6e-01
iter. 3 6.3e-16 1.1e-15 1.3e-15 1.7e-02
iter. 4 2.8e-15

Table 1: QMC compression by with more than one million points on a spherical polygon approximating
continental Africa.

deg 3 6 9 12 15
EQMC(g1) 3.0e-05

EdCATCH(g1) 1.0e-03 3.1e-05 2.7e-05 3.2e-05 1.7e-05
EQsurf(g1) 1.2e-04 3.0e-05 3.0e-05 3.0e-05 3.0e-05
EQMC(g2) 1.5e-05

EdCATCH(g2) 8.9e-05 1.5e-05 2.5e-05 4.9e-07 3.7e-06
EQsurf(g2) 1.4e-05 1.5e-05 1.5e-05 1.5e-05 1.5e-05
EQMC(g3) 8.6e-04

EdCATCH(g3) 2.4e-02 1.3e-03 7.8e-04 8.2e-04 5.8e-04
EQsurf(g3) 2.3e-02 7.7e-04 8.3e-04 8.6e-04 8.6e-04

Table 2: Relative integration errors for the three test functions (14)-(16) on a spherical polygon approx-
imating continental Africa, by means of QMC, dCATCH and Qsurf.

Lastly, in Table 4 we approximate the value of
∫
S gk dσ , k = 1,2,3, with the same func-

tions defined in (14)-(16) and P0 = (0,−3,2). The reference values of the integrals have been
computed by means of a QMC rule with very high cardinality (more than 20 million points).
We display the relative errors of the QMC rule with about one million points and of the two
proposed compressions. Notice again that, as expected from estimate (12), by increasing the
QMC moment-matching degree the errors tend to stabilize around the underlying QMC error.

3.3 Cartesian graph
In the third example we consider as a regular surface S the Cartesian graph of an analytic
function, namely the popular Franke’s surface, which is the graph of a linear combination of
Gaussians

F(u,v) =
3
4

e−
1
4 ((9u−2)2+(9v−2)2)+

3
4

e−
1

49 ((9u+1)2+(9v+1)2)

+
1
2

e−
1
4 ((9u−7)2+(9v−3)2)− 1

5
e−((9u−4)2+(9v−7)2) , (18)
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(a) (b)

Figure 2: 100 compressed QMC points (red) at exactness degree n = 7, extracted from about
8000 mapped Halton points (blue) by rejection sampling on a torus region, determined by a
cutting ball and plane (view from different perspectives).

deg 3 6 9 12 15
card. QMC M = 1,006,200

card. dCATCH 20 74 164 290 450
card. Qsurf 20 74 164 290 452
compr. ratio 5.0e+04 1.3e+04 6.1e+03 3.5e+03 2.2e+03

cpu Halton seq. 1.0e+01s
cpu dCATCH 2.8e+00s 1.6e+01s 4.4e+01s 1.2e+02s 3.0e+02s

cpu Qsurf 2.7e-01s 9.9e-01s 2.9e+00s 6.3e+00s 2.2e+01s
speed-up 10.4 16.2 15.2 19.0 13.6

mom. resid. dCATCH 1.2e-11 1.2e-11 1.2e-11 1.2e-11 ⋆ 9.1e-07
mom. resid. Qsurf

iter. 1 3.0e-16 8.9e-01 1.3e+00 6.4e+00 2.5e+01
iter. 2 1.1e-15 1.9e-15 2.6e-01 1.3e-01
iter. 3 3.3e-15 4.5e-15

Table 3: QMC compression with more than one million points on the torus region in Fig. 2.

(u,v) ∈ D = (0,1)× (0,1).
We take two regions of such a surface, the first determined by a cutting ball and plane,

whereas the second is a disconnected one determined by three cutting balls; see Figs. 3 and
4. Again, the map Ψ is analytic and regular, since ∥∂uΨ×∂vΨ∥2 =

√
1+(∂uF)2 +(∂vF)2, so

that Proposition 1 with Remarks 1-2 applies and algorithm Qsurf can be used.
The numerical tests are collected in Tables 5-8, and show results that are in line with those

of the previous examples, apart from the fact that the numerically determined dimension of the
trivariate polynomial spaces does not collapse on the surface (at least up to degree 9). This
is expected since Franke’s surface is a transcendental, i.e. not algebraic, surface. Notice in
particular that at degrees 9, 12, 15, dCATCH fails to reach the required residual tolerance,
whereas Qsurf always succeeds in at most 4-5 iterations.

Remark 4. In the numerical code there are some parameters ε , θ and τ that must be specified.
The cardinality increase factor θ , becomes important when compression is not achieved,

using the current subset of the QMC nodes. A small θ would propose a new pointset that may
fail at the next stage because not dense enough, while a large value would instead define a too
dense set, possibly increasing the algorithm cputime. Thus we decided as reasonable choice to
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Qsurf

(a) (b)

Figure 3: 120 compressed QMC points (red) at exactness degree n = 7, extracted from about
6500 mapped Halton points (blue) by rejection sampling on a Franke’s surface region, deter-
mined by a cutting ball and plane (view from different perspectives).

(a) (b)

Figure 4: 120 compressed QMC points (red) at exactness degree n = 7, extracted from about
6500 mapped Halton points (blue) by rejection sampling on a Franke’s surface disconnected
region, determined by three cutting balls (view from different perspectives).
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deg 3 6 9 12 15
EQMC(g1) 1.7e-04

EdCATCH(g1) 3.5e-01 1.2e-02 2.5e-03 2.2e-04 2.2e-04
EQsurf( f1) 5.5e-01 6.5e-02 2.4e-03 5.4e-04 1.5e-04
EQMC(g2) 2.4e-04

EdCATCH(g2) 3.5e-01 2.5e-01 7.2e-03 1.3e-04 2.4e-04
EQsurf( f2) 1.7e+00 1.3e-01 1.5e-03 1.8e-04 2.4e-04
EQMC(g3) 5.2e-06

EdCATCH( f3) 4.3e-03 2.3e-06 5.2e-06 5.2e-06 5.2e-06
EQsurf(g3) 8.0e-03 3.1e-06 5.2e-06 5.2e-06 5.2e-06

Table 4: Relative errors for the three test functions (14)-(16) on the torus region of Fig. 2, by means of
QMC, dCATCH and Qsurf.

deg 3 6 9 12 15
card. QMC M = 1,293,600

card. dCATCH 20 84 212 407 586
card. Qsurf 20 84 220 442 701
compr. ratio 6.5e+04 1.5e+04 5.9e+03 2.9e+03 1.8e+03

cpu Halton seq. 1.8e+00s
cpu dCATCH 3.6e+00s 2.1e+01s 5.7e+01s 1.8e+02s 4.9e+02s

cpu Qsurf 3.5e-01s 1.4e+00s 3.8e+00s 2.0e+01s 2.7e+01s
speed-up 10.3 15.0 15.0 9.0 18.1

mom. resid. dCATCH 7.6e-12 7.6e-12 ⋆ 8.9e-04 ⋆ 2.9e-03 ⋆ 5.9e-03
mom. resid. Qsurf

iter. 1 1.9e-16 5.5e-01 1.5e+00 1.4e+01 3.4e+01
iter. 2 1.0e-15 1.8e-15 3.9e-01 1.9e+00
iter. 3 1.2e-02 4.2e-15
iter. 4 2.5e-15

Table 5: QMC compression with more than one million points on on the Franke’s surface region in Fig.
3.

set θ = 2, so doubling the cardinality of the pointset in case of failure.
To illustrate the effect of this choice, we consider the torus region in Figure 2, for degree

of exactness 6 and different values of θ , that is θ = 1.2,1.4, . . . ,5. In Figure 5 we take as
ordinate the median of the cputime of the bottom-up QMC compression over 10 tests. In such
experiment, values of θ in the interval [2,3] show a good behavior, justifying our choice.

Concerning the relative moment matching tolerance ε , as default we used ε = 10−10, in
view of the typical approximation quality of the QMC approximation. However if the initial
cardinality of the QMC rule is sufficiently large, there is numerical evidence that for mild
degrees of precision the value of ε can be set smaller, e.g. ε = 10−14.

Finally, recalling that the relative residual decrease threshold τ > 1 is important to deter-
mine if the residual error made by successive stages of the algorithm, say resold and resnew, is
stagnating, we set as default τ = 10, so detecting such an event when resold < 10resnew. We
decided for this option, since a much higher value would indicate stagnation even when it does
not happen, while a much smaller value would rarely detect such a situation.
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deg 3 6 9 12 15
card. QMC M = 1,305,444

card. dCATCH 20 84 212 405 612
card. Qsurf 20 84 220 448 735
compr. ratio 6.5e+04 1.6e+04 5.9e+03 2.9e+03 1.8e+03

cpu Halton seq. 1.74e+00s
cpu dCATCH 3.8e+00 s 2.2e+01 5.2e+01 1.9e+02s 5.0e+02s

cpu Qsurf 3.6e-01 1.4e+00 9.0e+00 3.9e+01 6.3e+01
speed-up 10.6 15.7 5.8 4.9 7.9

mom. resid. dCATCH 1.8e-12 1.8e-12 ⋆ 8.2e-04 ⋆ 2.4e-03 ⋆ 3.4e-03
mom. resid. Qsurf

iter. 1 6.0e-16 7.4e-02 7.7e-01 3.2e+01 3.4e+01
iter. 2 1.2e-15 2.4e-01 4.0e-01 6.1e+00
iter. 3 2.4e-01 8.5e-02 6.1e+00
iter. 4 1.6e-11 8.5e-02 9.2e-12
iter. 5 7.9e-12

Table 6: QMC compression with more than one million points on the on the Franke’s surface discon-
nected region in Fig. 4.

deg 3 6 9 12 15
EQMC(g1) 1.2e-05

EdCATCH(g1) 4.4e-03 1.1e-05 1.5e-06 8.1e-06 4.6e-05
EQsurf(g1) 6.7e-04 9.6e-06 1.2e-05 1.2e-05 1.2e-05
EQMC(g2) 3.0e-07

EdCATCH(g2) 7.8e-05 2.9e-07 3.6e-05 1.2e-04 6.3e-05
EQsurf(g2) 4.0e-05 3.0e-07 3.0e-07 3.0e-07 3.0e-07
EQMC(g3) 6.0e-05

EdCATCH(g3) 1.4e-01 3.8e-05 1.1e-04 2.8e-05 1.2e-04
EQsurf(g3) 2.2e-02 1.1e-04 6.1e-05 6.0e-05 6.0e-05

Table 7: Relative integration errors for the three test functions (14)-(16) on the Franke’s surface region
of Fig. 3, by means of QMC, dCATCH, Qsurf.

1 1.5 2 2.5 3 3.5 4 4.5 5

10
-2

10
-1

10
0

10
1

Figure 5: Median of the cputime of the bottom-up QMC compression with degree of exactness
n = 6, over 10 tests, on a subregion of the torus, for several values of θ .
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deg 3 6 9 12 15
EQMC(g1) 1.3e-06

EdCATCH(g1) 4.6e-03 2.3e-06 1.7e-05 8.1e-06 2.1e-05
EQsurf(g1) 2.1e-03 9.7e-07 1.3e-06 1.3e-06 1.3e-06
EQMC(g2) 6.6e-05

EdCATCH(g2) 5.3e-05 6.6e-05 6.7e-05 9.1e-05 4.8e-05
EQsurf(g2) 1.1e-04 6.6e-05 6.6e-05 6.6e-05 6.6e-05
EQMC(g3) 1.7e-06

EdCATCH(g3) 2.3e-01 4.1e-05 1.6e-04 6.3e-05 8.1e-05
EQsurf(g3) 1.1e-01 4.0e-05 1.3e-06 1.7e-06 1.7e-06

Table 8: Relative integration errors for the three test functions (14)-(16) on the Franke’s surface discon-
nected region of Fig. 4, by means of QMC, dCATCH, Qsurf.

4 Software
We have implemented and tested in Matlab all the described routines.

The demos demo_CQMC_sphpoly, demo_CQMC_torus, demo_CQMC_franke illustrate the
numerical experiments performed in the previous section. Their structure is essentially similar
and can be modified to treat other subsets and/or parametric surfaces, adapting the function
pts_domain to the new instance. This corresponds to items (i) and (ii) of Algorithm Qsurf.

The routine cqmc_v2 implements its remaining items from (iii) to (vi). To this purpose,
the basis selection in (iii) is obtained by means of the function dCHEBVAND_v2, while the com-
putation of a sparse solution in (v5) is achieved by an user’s choice implementation of the
Lawson-Hanson algorithm (namely, the Matlab built-in function lsqnonneg or the alternative
open-source codes lawsonhanson and LHDM proposed respectively in [24] and [9]). Moreover,
having in mind to compare algorithm Qsurf with previous approaches, we also provide the
routine dCATCH from [11], which implements Caratheodory-like compression via NNLS.

The open source software is available at [15].
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