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Abstract

In this manuscript, we propose an efficient, practical and easy-to-implement way to ap-
proximate actions of ϕ-functions for matrices with d-dimensional Kronecker sum structure
in the context of exponential integrators up to second order. The method is based on a di-
rection splitting of the involved matrix functions, which lets us exploit the highly efficient
level 3 BLAS for the actual computation of the required actions in a µ-mode fashion. The
approach has been successfully tested on two- and three-dimensional problems with var-
ious exponential integrators, resulting in a consistent speedup with respect to a technique
designed to approximate actions of ϕ-functions for Kronecker sums.
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1 Introduction
The problem of computing actions of exponential and exponential-like functions with Kro-
necker sum structure received a lot of attention in the last years [6, 8, 10, 14, 21, 22, 25].
Indeed, the efficient approximation of such quantities allows to effectively employ exponential
integrators for the time integration of large stiff systems of Ordinary Differential Equations
(ODEs). More in detail, we suppose to work with the following system of ODEs{

uuu′(t) = Kuuu(t)+ggg(t,uuu(t)), t > 0,
uuu(0) = uuu0.

(1a)
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The stiff part is represented by the matrix K ∈ CN×N which has d-dimensional Kronecker sum
structure, i.e.,

K = Ad ⊕Ad−1 ⊕·· ·⊕A1 =
d

∑
µ=1

A⊗µ , A⊗µ = Id ⊗·· ·⊗ Iµ+1 ⊗Aµ ⊗ Iµ−1 ⊗·· ·⊗ I1. (1b)

Here, Aµ ∈ Cnµ×nµ and Iµ is the identity matrix of size nµ . Moreover, ggg(t,uuu(t)) is a generic
nonlinear function of t and of the unknown uuu(t)∈CN , with N = n1 · · ·nd . Throughout the paper
the symbol ⊗ denotes the standard Kronecker product of matrices, while ⊕ is employed for the
Kronecker sum of matrices. Finally, we refer to system (1) as a system in Kronecker form or
with Kronecker sum structure.

This kind of systems naturally arises in many contexts. For example, if d = 2, such a
structure appears in constant coefficient matrix Riccati differential equations (see, for instance,
Reference [1, Ch. 3]) {

UUU ′(t) = A1UUU(t)+UUU(t)AT
2 +C+UUU(t)BUUU(t),

UUU(0) =UUU0,
(2)

where UUU(t) ∈ Cn1×n2 , B ∈ Cn2×n1 , and C ∈ Cn1×n2 . Indeed, using the properties of the Kro-
necker product [31], we can rewrite equivalently such a matrix equation as a system of ODEs
in Kronecker form (1), i.e.,{

uuu′(t) = ((I2 ⊗A1)+(A2 ⊗ I1))uuu(t)+vec(C+UUU(t)BUUU(t)),
uuu(0) = vec(UUU0),

(3)

where vec is the operator which stacks the columns of the input matrix in a single vector.
Systems with Kronecker sum structure often arise also when applying the method of lines

to approximate numerically the solution of a Partial Differential Equation (PDE) defined on
a tensor product domain and appropriate boundary conditions. Indeed, after semidiscretiza-
tion in space of well-known parabolic equations such as Allen–Cahn, Brusselator, Gray–Scott,
advection–diffusion–reaction [8, 10] or Schrödinger equations [6], we obtain a large stiff sys-
tem of ODEs in form (1).

Once system (1) is given, many techniques can be employed to numerically integrate it in
time, and in particular we are interested in the application of exponential integrators [19]. In
fact, they are a prominent way to perform the required task since they enjoy favorable stability
properties that make them suitable to work in the stiff regime. These kinds of schemes require
the computation of the action of the matrix exponential and of exponential-like matrix functions
(the so-called ϕ-functions) on vectors. They are defined, for a generic matrix X ∈ CN×N , as

ϕ0(X) = eX , ϕℓ(X) =
∫ 1

0

θ ℓ−1

(ℓ−1)!
e(1−θ)X dθ , ℓ > 0, (4a)

and their Taylor series expansion is given by

ϕℓ(X) =
∞

∑
i=0

X i

(i+ ℓ)!
, ℓ≥ 0. (4b)

When the size of X allows, it is common in practice to approximate such matrix functions by
means of diagonal Padé approximations [2, 5, 30] or via polynomial approximations [12, 20,
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29]. On the other hand, when X is large sized, this approach is computationally unfeasible, and
many algorithms have been developed to perform directly the action of ϕ-functions on vectors.
We mention, among the others, Krylov-based techniques [16, 23, 26], direct polynomial meth-
ods [3, 7, 11, 20], and hybrid techniques [9]. When X is in fact a matrix K with Kronecker sum
structure (1b), it is possible to exploit this information to compute more efficiently the action
of the ϕ-functions on a vector. Indeed, let us consider ℓ = 0, so that ϕ0(K) = eK . Then, it is
easy to see [10] that computing

eee = eKvvv = eAd⊕Ad−1⊕···⊕A1vvv =
(

eAd ⊗ eAd−1 ⊗·· ·⊗ eA1
)

vvv (5)

is mathematically equivalent to the tensor formulation

EEE =VVV ×1 eA1 ×2 · · ·×d eAd . (6)

Here, EEE and VVV are order-d tensors of size n1 ×·· ·×nd that satisfy vec(EEE) = eee and vec(VVV ) = vvv,
respectively, while vec is the operator which stacks the columns of the input tensor into a
suitable single column vector. The symbol ×µ denotes the tensor–matrix product along the
mode µ , which is also known as µ-mode product, and the computation of consecutive µ-mode
products (as it happens in formula (6)) is usually referred to as Tucker operator. Notice that the
element ei1...id of the tensor EEE turns out to be

ei1...id =
nd

∑
jd=1

· · ·
n1

∑
j1=1

v j1... jd

d

∏
µ=1

eµ

iµ jµ , 1 ≤ iµ ≤ nµ , (7)

being eµ

iµ jµ the generic element of eAµ . Although formulas (5), (6), and (7) are mathematically
equivalent, the direct usage of both formulas (5) and (7) is much less efficient than formula (6),
which is implemented by exploiting the highly performance level 3 BLAS after computing the
small sized matrix exponentials eAµ . Indeed, for instance, formula (6) in two dimensions re-
quires two matrix-matrix products, as it reduces to eA1VVV

(
eA2
)T, while in the d-dimensional

case it requires d level 3 BLAS calls. This technique led to the so-called µ-mode integrator [6],
and has been successfully used to integrate in time semidiscretizations of advection–diffusion–
reaction and Schrödinger equations, eventually in combination with a splitting scheme. In
particular, it is reported a consistent speedup with respect to state-of-the-art techniques to com-
pute the action of the matrix exponential on a vector, as well as a very good scaling when
performing GPUs simulations. We invite a reader interested in more details and applications of
the Tucker operator to check References [6, 10].

When computing actions of ϕ-function of higher order, i.e., ϕℓ(K)vvv with ℓ > 0, the last
equality in formula (5) does not hold anymore. In Reference [8] the authors propose an ap-
proach to overcome this difficulty, by developing a method based on the application of a quadra-
ture formula to the integral definition of the ϕ-functions (4a). In fact, it requires an action of
the matrix exponential for each quadrature point, which is performed by a Tucker operator. In
this way, it is possible to compute the required action of ϕ-functions at a given tolerance. The
technique, which has been named PHIKS, has been developed for arbitrary dimension d and is
designed to compute not only ϕ-functions applied to a vector but also linear combinations of
actions of ϕ-functions. In addition the desired quantities can be made available simultaneously
at suitable different time scales. These features allow to implement high stiff order exponen-
tial integrators, such as exponential Runge–Kutta schemes, in a more efficient way compared
to the usage of state-of-the-art techniques to compute combinations of actions of ϕ-functions.
Another very recent method based on quadrature rules applied to formula (4a) is presented

M. Caliari, F. Cassini 3/20



Direction splitting of ϕ-functions in exponential integrators

in Reference [14], where the technique is described only in dimension d ≤ 3 for actions of
single ϕ-functions at a given time scale. Other approaches for the action of ϕ-functions for
matrices with Kronecker sum structure are available in the literature. We mention for instance
Reference [25], whose algorithm is based on the solution of Sylvester equations and is cur-
rently limited to dimension d = 2. Another way to approximate the action of ϕ-functions of
the Sylvester operator A1VVV +VVV AT

2 or the Lyapunov operator AVVV +VVV AT for the solution of Ric-
cati differential equations, possibly in the context of low-rank approximation, is presented in
References [21, 22].

In this manuscript we propose an alternative way to approximate ϕℓ(K)vvv, with ℓ > 0 and K
a matrix with d-dimensional Kronecker sum structure, in the context of exponential integrators
up to second order. The approach, that we call PHISPLIT, is based on a direction splitting of the
matrix ϕ-functions of K, which generates an approximation error compatible with the one of
the time marching numerical scheme. The evaluation of the required actions is performed in a
µ-mode fashion by means of a single Tucker operator for each ϕ-function, exploiting the highly
efficient level 3 BLAS. After recalling some popular exponential integrators in Section 2, we
describe in Section 3 the proposed technique, as well as how to employ it to implement the just
mentioned exponential schemes. Then, in Section 4 we present some numerical experiments
that show the effectiveness of PHISPLIT, and we finally draw some conclusions in Section 5.

2 Recall of some exponential integrators up to order two
When numerically integrating stiff semilinear ODEs in form (1), a prominent approach is to
use exponential integrators [19]. For convenience of the reader, we report here (for simplicity
in a constant time step size scenario) a possible derivation of the exponential schemes that will
be employed later in the numerical experiments of Section 4.

The starting point is the variation-of-constants formula

uuu(tn+1) = eτKuuu(tn)+
∫ tn+1

tn
e(tn+1−s)Kggg(s,uuu(s))ds

= eτKuuu(tn)+ τ

∫ 1

0
e(1−θ)τKggg(tn + τθ ,uuu(tn + τθ))dθ

(8)

which expresses the analytical solution of system (1a) at time tn+1 = tn+τ , where τ is the time
step size. If we approximate the integral with the rectangle left rule, we get the scheme

uuun+1 = eτKuuun + τeτKggg(tn,uuun) = eτK(uuun + τggg(tn,uuun)), (9)

which is known as Lawson–Euler scheme (see Reference [4, Sec. A.1.1]). It is of order one,
exact if ggg(t,uuu(t)) is null. The linear part of system (1a) is solved exactly and thus no restriction
on the time step size due to the stiffness is necessary. Instead, if the trapezoidal quadrature rule
is applied to the integral in equation (8), we get the approximation

uuu(tn+1)≈ eτKuuu(tn)+
τ

2
(
eτKggg(tn,uuu(tn))+ggg(tn+1,uuu(tn+1))

)
.

An explicit time marching scheme is then obtained by creating an intermediate stage uuun2 which
approximates uuu(tn+1) in the right hand side by the Lawson–Euler scheme (9). Overall, we get

uuun2 = eτK(uuun + τggg(tn,uuun)),

uuun+1 = eτK
(

uuun +
τ

2
ggg(tn,uuun)

)
+

τ

2
ggg(tn+1,uuun2),

(10)
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which is a Lawson method of order two, also known in literature as Lawson2b (see Refer-
ence [4, Sec. A.1.6]).

A different approach to the approximation of the integral in formula (8) leads to the so-
called exponential Runge–Kutta methods. Indeed, if we approximate only the nonlinear func-
tion ggg(tn+τθ ,uuu(tn+τθ)) by ggg(tn,uuu(tn)), by using the definition of ϕ1 function in equation (4a)
we get the scheme

uuun+1 = eτKuuun + τϕ1(τK)ggg(tn,uuun),

which can be equivalently rewritten as

uuun+1 = uuun + τϕ1(τK)(Kuuun +ggg(tn,uuun)) (11)

and is known as exponential Euler (or Nørsett–Euler, see Reference [4, Sec. A.2.1]). It is a
first order scheme, exact if ggg(t,uuu(t)) is constant. Another possibility is to interpolate ggg(tn +
τθ ,uuu(tn +τθ)) with a polynomial of degree one in θ at 0 and 1, thus obtaining the approxima-
tion

uuu(tn+1)≈ eτKuuu(tn)+ τ

∫ 1

0
e(1−θ)τK(θggg(tn+1,uuu(tn+1))+(1−θ)ggg(tn,uuu(tn)))dθ .

By taking a stage uuun2 which approximates uuu(tn+1) in the right hand side by the exponential
Euler scheme, and using the definitions of ϕ1 and ϕ2 functions in formula (4a), we obtain
the second order exponential Runge–Kutta scheme (also known in literature as ETD2RK, see
Reference [4, Sec. A.2.5])

uuun2 = uuun + τϕ1(τK)(Kuuun +ggg(tn,uuun)),

uuun+1 = uuun2 + τϕ2(τK)(ggg(tn+1,uuun2)−ggg(tn,uuun)).
(12)

Finally, we consider the Rosenbrock–Euler method (see Reference [19, Ex. 2.20]) which,
in the autonomous case, can be obtained from the application of the exponential Euler scheme
to the linearized differential equation

uuu′(t) =
(

K +
∂ggg
∂uuu

(uuun)︸ ︷︷ ︸
Kn

)
uuu(t)+

(
ggg(uuu(t))− ∂ggg

∂uuu
(uuun)uuu(t)

)
,

where Kn is the Jacobian evaluated at uuun. The resulting scheme is

uuun+1 = uuun + τϕ1(τKn)(Kuuun +ggg(uuun)). (13)

It is a second order method and, in contrast to all the methods presented above, it requires
the evaluation of a different matrix function ϕ1(τKn) at each time step. The extension to non-
autonomous systems is straightforward, see Reference [19, Ex. 2.21].

Remark 2.1. We considered here only a selected number of exponential integrators which re-
quire the action of ϕ-functions. Other exponential-type schemes of first or second order could
benefit from the µ-mode splitting technique for computing ϕ-functions of Kronecker sums that
we present in this work. We mention, among the others, exponential multistep schemes [13],
corrected splitting schemes [15], low-regularity schemes [28], and Magnus integrators for lin-
ear time dependent coefficient non-homogeneous equations [17].
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3 Direction splitting of ϕ-functions
As mentioned in the introduction, we suppose that we are dealing with a matrix K with Kro-
necker sum structure (1b), and we are interested in approximating efficiently ϕℓ(τK)vvv, vvv ∈CN ,
τ ∈ R, in the context of exponential integrators. In particular, we know that by employing a
scheme of order p, we make a local error O(τ p+1), being τ the (constant) time step size. Hence,
if the integrator requires to compute a quantity of the form τqϕℓ(τK), with q > 0, it is sufficient
to approximate ϕℓ(τK) with an error O(τ p+1−q) to preserve the order of convergence. For
our schemes of interest, i.e., the ones presented in the previous section, we make use of the
following result.

Theorem 3.1. Let K be a matrix with d-dimensional Kronecker sum structure (1b). Then, for
ℓ > 0, we have

ϕℓ(τK) = (ℓ!)d−1 (ϕℓ(τAd)⊗ϕℓ(τAd−1)⊗·· ·⊗ϕℓ(τA1))+O(τ2). (14)

Proof. For compactness of presentation, we employ the following notation

Xd ⊗Xd−1 ⊗·· ·⊗X1 =
1⊗

µ=d

Xµ , Xµ ∈ Cnµ×nµ .

Then, by using the Taylor expansion of the ϕℓ function (4b) and the properties of the Kronecker
product (see Reference [31] for a comprehensive review) we obtain

(ℓ!)d−1
1⊗

µ=d

ϕℓ(τAµ) = (ℓ!)d−1
1⊗

µ=d

(
Iµ

ℓ!
+

τAµ

(ℓ+1)!
+O(τ2)

)

= (ℓ!)d−1

 1
(ℓ!)d

1⊗
µ=d

Iµ +
τ

(ℓ!)d−1(ℓ+1)!

d

∑
µ=1

A⊗µ +O(τ2)


=

I
ℓ!
+

τK
(ℓ+1)!

+O(τ2)

= ϕℓ(τK)+O(τ2),

where I is the identity matrix of size N ×N.

Formula (14) allows for an efficient µ-mode based implementation, similarly to the matrix
exponential case (6). Indeed, given an order-d tensor VVV , if we define the tensor formulation

PPP(2)
ℓ (VVV ) =

(
(ℓ!)d−1VVV

)
×1 ϕℓ(τA1)×2 ϕℓ(τA2)×3 · · ·×d ϕℓ(τAd), (15)

we have
ϕℓ(τK)vvv = ppp(2)ℓ (vvv)+O(τ2),

where vvv = vec(VVV ) and ppp(2)ℓ (vvv) = vec(PPP(2)
ℓ (VVV )).

This is precisely the formulation that we propose to employ in the above exponential in-
tegrators when actions of ϕ-functions of a matrix with Kronecker sum structure are required.
From now on, we refer to this technique as the PHISPLIT approach. Notice that, after the
computation of the small sized matrix functions ϕℓ(τAµ), with µ = 1, . . . ,d, a single Tucker
operator is required to evaluate the approximation.
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3.1 Evaluation of small sized matrix ϕ-functions
The matrices Aµ have a much smaller size compared to K, and the corresponding matrix ϕ-
functions can be directly computed without much effort. In particular, for ϕ0 (i.e., the expo-
nential function), we employ the most popular technique for generic matrices, which is based
on a diagonal rational Padé approximation coupled with a scaling and squaring algorithm (see
Reference [2]). This procedure is encoded in the internal MATLAB function expm. Different al-
gorithms that could be used as well, based on Taylor approximations of the matrix exponential,
can be found in References [12, 29].

For the computation of higher order matrix ϕ-functions we rely on a quadrature formula
applied to the integral definition (4a). For a generic matrix X ∈ CN×N , we have then

ϕℓ(X)≈
q

∑
i=1

wie(1−θi)X θ
ℓ−1
i

(ℓ−1)!
, ℓ > 0. (16)

In order to avoid an impractically large number of quadrature points, we couple the procedure
with a modified scaling and squaring algorithm (see Reference [30]). In fact, we scale the orig-
inal matrix X by 2s, where s is a natural number defined so that ∥X/2s∥1 < 1, we approximate
ϕℓ(X/2s) by means of formula (16) and we recover ϕℓ(X) by the recurrence

ϕℓ(2z) =
1
2ℓ

[
ez

ϕℓ(z)+
ℓ

∑
k=1

ϕk(z)
(ℓ− k)!

]
. (17)

In order to compute the needed matrix exponentials, we again employ the internal MATLAB

function expm. Notice that the squaring of ϕℓ also requires the evaluation of all the ϕ j functions,
for 0 < j < ℓ. In particular, for the first squaring step, we compute themselves by formula (16)
with ℓ = j and using the same set of matrix exponentials already available for the quadrature
procedure of ϕℓ(X/2s). For all the subsequent squaring steps, we use formula (17) itself with
ℓ = j. As a consequence of this procedure, the computation of a single matrix function ϕℓ

makes available all the matrix functions ϕ j, with 0 ≤ j ≤ ℓ. In practice, for the quadrature we
employ the Gauss–Legendre–Lobatto formula, which allows for high precision with a moderate
number of quadrature nodes. Moreover, since it uses the endpoints of the quadrature interval,
we make use of the matrix exponential eX/2s

(θ1 = 0), which is also required for the subsequent
squaring procedure, and we avoid generating the last matrix exponential since θq = 1. The
overall procedure is implemented in MATLAB language in our function phiquad.

Alternatively, for the computation of the matrix ϕ-functions, it is possible to employ the
MATLAB routine phipade (see Reference [5]), whose algorithm is based on a rational Padé
approximation coupled with the squaring formula (17). Another recent technique that employs
a polynomial Taylor approximation instead of rational Padé one is presented in Reference [20].

3.2 Practical implementation of the exponential integrators
The implementation of the Lawson methods introduced in Section 2, which require just actions
of matrix exponentials, does not suffer from any direction splitting error, thanks to the equiv-
alence between formulas (5) and (6). In particular, the tensor formulation of Lawson–Euler
is

UUUn+1 = (UUUn + τGGG(tn,UUUn))×1 eτA1 ×2 · · ·×d eτAd , (18)
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while the Lawson2b scheme is given by

UUUn2 = (UUUn + τGGG(tn,UUUn))×1 eτA1 ×2 · · ·×d eτAd ,

UUUn+1 =
(

UUUn +
τ

2
GGG(tn,UUUn)

)
×1 eτA1 ×2 · · ·×d eτAd +

τ

2
GGG(tn+1,UUUn2).

(19)

The remaining exponential integrators transform as follows. First of all, the action of the matrix
K on uuun is computed in tensor form as

d

∑
µ=1

(
UUUn ×µ Aµ

)
(20)

without explicitly assembling the matrix K (see Reference [9]). The exponential Euler PHIS-
PLIT method is

UUUn+1 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(tn,UUUn)

)
×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd). (21)

Notice that an alternative version, which we will not consider in this work but could be more
appropriate for the cases in which the contribute of GGG(tn,UUUn) is particularly small, is

UUUn+1 =UUUn ×1 eτA1 ×2 · · ·×d eτAd + τGGG(tn,UUUn)×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd), (22)

that is in fact an exact formula if GGG(t,UUU(t)) is null. The ETD2RK PHISPLIT scheme becomes

UUUn2 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(tn,UUUn)

)
×1 ϕ1(τA1)×2 · · ·×d ϕ1(τAd),

UUUn+1 =UUUn2 + τ

(
2d−1 (GGG(tn+1,UUUn2)−GGG(tn,UUUn))

)
×1 ϕ2(τA1)×2 · · ·×d ϕ2(τAd).

(23)

Finally, concerning the exponential Rosenbrock–Euler method for autonomous systems, we
assume that the Jacobian Kn can be written as a Kronecker sum, i.e.,

Kn = K +
∂ggg
∂uuu

(uuun) = Jd(UUUn)⊕ Jd−1(UUUn)⊕·· ·⊕ J1(UUUn).

Therefore the exponential Rosenbrock–Euler PHISPLIT method is

UUUn+1 =UUUn + τ

(
d

∑
µ=1

(UUUn ×µ Aµ)+GGG(UUUn)

)
×1 ϕ1(τJ1(UUUn))×2 · · ·×d ϕ1(τJd(UUUn)). (24)

4 Numerical experiments
In this section we present numerical experiments to validate the proposed approach PHISPLIT.
In particular, we will consider a two-dimensional example from linear quadratic control and a
three-dimensional example which models an advection–diffusion–reaction equation. To per-
form the time marching, we will employ the exponential integrators of Section 2 as described
in Section 3.2 for the PHISPLIT version.

As term of comparison, we will consider the approximation of actions of ϕ-functions for
matrices with Kronecker sum structure using PHIKS1 [8]. This algorithm operates in tensor

1https://github.com/caliarim/phiks
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formulation using µ-mode products, too, but it requires an input tolerance, which we take
proportional to the local temporal order of the method and to the norm of the current solution.
The proportionality constant is chosen so that the accuracy of the routine does not affect the
integration error.

To compute all the relevant tensor operations, i.e., Tucker operators and µ-mode products,
we use the functions contained in the package KronPACK2. Moreover, to compute the needed
matrix ϕ-functions, we employ the internal MATLAB function expm (for ϕ0) and the function
phiquad (for ϕℓ, ℓ > 0), as presented in Section 3.1. In terms of hardware, we run all the
experiments employing an Intel® Core™ i7-10750H CPU with six physical cores and 16GB of
RAM. As a software, we use MathWorks MATLAB® R2022a.

4.1 Example of code usage
All the codes to reproduce the following numerical experiments, together with our implementa-
tion of PHISPLIT and the function phiquad, can be found in a maintained GitHub repository3.
They are written in MATLAB language and they are fully compatible with GNU Octave. As an
example, we show in Code 1 how to perform a full integration of problem (1) by the ETD2RK
PHISPLIT method (23) with constant time step size.

Code 1: Implementation of ETD2RK PHISPLIT
1 % compute once and for all phi1 and phi2 functions and store them
2 for mu = 1:d
3 [phi_store.phi{1:2,mu}] = phiquad(tau * A{mu},2);
4 end
5
6 % time integration
7 U = U0;
8 t = 0;
9 for i = 1:m
10 Gn = G(t,U);
11 P1 = phisplit(tau,A,kronsumv(U,A) + Gn,1,phi_store); % phi1 approximation
12 Un2 = U + tau * P1; % intermediate stage
13 P2 = phisplit(tau,A,G(t + tau,U2) − Gn,2,phi_store); % phi2 approximation
14 U = Un2 + tau * P2; % updated solution
15 t = t + tau;
16 end

Here, we simply notice that the required ϕ-functions are computed once and for all before time
integration by the function phiquad, the function phisplit computes approximation (15),
while the function kronsumv of the KronPACK package realizes formula (20).

4.2 Linear quadratic control
We present in this section a classical example from linear quadratic control (see, for instance,
References [24, 27]). We are interested in the minimization over the scalar control v(t) ∈ R of
the functional

J (v) =
1
2

∫ T

0

(
αs(t)2 + v(t)2)dt

subject to the constraints

w′(t) = Aw(t)+bv(t), w(0) = w0,

s(t) = cw(t).

2https://github.com/caliarim/KronPACK
3https://github.com/caliarim/phisplit
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Here w(t) ∈ Rn×1 is a column vector containing the state variables, s(t) ∈ R represents the
scalar output, A ∈ Rn×n is the system matrix, b ∈ Rn×1 is the system column vector, c ∈ R1×n

is a row vector, and α ∈ R+ is a positive scalar.
Then, the solution of the constrained optimization problem is determined by the optimal

control
v∗(t) =−bTUUU(t)w(t),

where UUU(t) ∈ Rn×n satisfies the symmetric Riccati differential equation{
UUU ′(t) = ATUUU(t)+UUU(t)A+C+UUU(t)BUUU(t),
UUU(0) = ZZZ,

(25)

where C = αcTc and B =−bbT (see Reference [1, Ch. 4] for a comprehensive introduction to
the subject). Here ZZZ ∈Rn×n is a matrix containing all zeros entries. Clearly, equation (25) is in
form (2), which in turn can be seen as a problem with two-dimensional Kronecker sum struc-
ture (3) and integrated efficiently by means of the techniques described in Section 3. Notice
also that the solution of equation (25) converges to a steady state determined by the algebraic
Riccati equation

ATUUU(t)+UUU(t)A+C+UUU(t)BUUU(t) = 0. (26)

For our numerical experiment, similarly to what previously done in the literature [21, 22,
24, 27], we take A ∈ Rn̂2×n̂2

as the matrix obtained by the discretization with second order
centered finite differences of the operator

∂xx +∂yy −10x∂x −100y∂y (27)

on the domain [0,1]2 with homogeneous Dirichlet boundary conditions. Moreover, the compo-
nents bk of the vector b are defined as

bk =

{
1 if 0.1 < xi ≤ 0.3,
0 otherwise,

k = i+( j−1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂,

while for the components ck of the vector c we take

ck =

{
1 if 0.7 < xi ≤ 0.9,
0 otherwise,

k = i+( j−1)n̂, i = 1, . . . , n̂, j = 1, . . . , n̂.

Here xi represents the ith (inner) grid point along the x direction. Finally, we set α = 100.
For the temporal integration of equation (25) we use the exponential Rosenbrock–Euler

method, already employed in References [21, 22], and reported in formula (13) (see for-
mula (24) for the PHISPLIT version). In fact, the Jacobian matrix of system (25) has the follow-
ing Kronecker sum structure

Kn = I ⊗ (AT+UUUnB)+(A+BUUUn)
T⊗ I,

where I is the identity matrix of size n × n, with n = n̂2. We remark that the exponential
Rosenbrock–Euler PHISPLIT method requires at each time step to evaluate the matrix func-
tion ϕ1(τ(AT+UUUnB)), to compute the action Kuuun and to perform one Tucker operator. We
will employ also the second order exponential Runge–Kutta method ETD2RK, reported in for-
mula (12) and presented in PHISPLIT sense in formula (23). Although each time step of this
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Figure 1: Convergence of the exponential Rosenbrock–Euler and of the ETD2RK methods,
both in PHIKS and in PHISPLIT variants, to the steady state of Riccati differential equation (25).
Here n̂ = 20, the integrators have been employed with 200 time steps, and the relative errors,
measured in the Frobenius norm with respect to the solution of algebraic Riccati equation (26),
are displayed each 10th time step.

integrator requires two Tucker operators plus the action Kuuun for the PHISPLIT version, in a
constant time step size implementation the needed matrix functions ϕ1(τAT) and ϕ2(τAT) can
be computed once and for all at the beginning.

First of all, we verify the implementation of the involved exponential integrators for a long
term simulation, i.e., until reaching the steady state. For this experiment, we employ n̂ = 20
inner discretization points for the x and the y variables. As confirmed by the plot in Figure 1,
around time 0.15 the methods, both in their PHIKS and PHISPLIT implementation, approach the
solution of equation (26), which is obtained with the MATLAB function icare from the Control
System Toolbox.

exp Rosenbrock–Euler PHIKS
steps 10 20 30 40 50
order – 2.11 2.06 2.05 2.03

ETD2RK PHIKS
steps 7 14 21 28 35
order – 2.08 2.05 2.03 2.03

exp Rosenbrock–Euler PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

ETD2RK PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

Table 1: Number of time steps and observed convergence rates for the time integration of Ric-
cati differential equation (25) up to final time T = 0.025, with different exponential integrators
and n̂ = 30. The achieved errors and the wall-clock times are displayed in Figure 2.

Then, we compare the performances of the integrators for the solution of equation (25)
with n̂ = 30 and final time T = 0.025. All methods are run with different time step sizes
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Figure 2: Achieved errors in the Frobenius norm and wall-clock times in seconds for the solu-
tion of Riccati differential equation (25) up to final time T = 0.025, with different integrators
and n̂ = 30. The number of time steps for each exponential method is reported in Table 1. The
input tolerances (both absolute and relative) for ode23 are 5e−3, 1e−3, 1e−4, 5.5e−5, and
5e−5.

in such a way to reach comparable relative errors with respect to a reference solution. The
number of time steps for each method and simulation, together with the numerically observed
convergence rate, is reported in Table 1. All the methods appear to be of second order, as
expected. In Figure 2 we report the relative errors and the corresponding wall-clock times of
the simulations. Here, we also include the performance of the built-in MATLAB function ode23.
This is an explicit Runge–Kutta method of order three with variable step size, suggested for not
stringent tolerances and for moderately stiff problems. In fact, it turned out to be the fastest
routine in the ODE suite to reach accuracies in the same range of the other methods. We notice
first of all that the exponential Rosenbrock–Euler method is always faster than ETD2RK in
the PHIKS implementation, that is with the action of matrix functions computed at a precision
that does not affect the temporal error (see the discussion at the beginning of the section). On
the other hand, the two implementations with PHISPLIT are always faster compared with their
PHIKS counterparts, although they require a larger number of time steps to reach a comparable
accuracy. Moreover, the ETD2RK method turns out to be faster with respect to the exponential
Rosenbrock–Euler method. This is mainly due to the fact that the matrix functions in the
Runge–Kutta case are computed only once before the time marching. This method is in fact
at least twice as fast as the other exponential methods and faster than ode23, which anyway
shows a good performance for the most stringent tolerances.

Finally, we repeat the same experiment with n̂ = 40. The results are presented in Table 2
and in Figure 3. The global behavior is similar with respect to the previous case, although
the speed-ups of the PHISPLIT implementations with respect to their PHIKS counterparts is
noticeably larger. In fact, ETD2RK PHISPLIT is still the most efficient method.

Remark 4.1. The discretization of the operator (27) has itself a Kronecker sum structure. Hence,
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exp Rosenbrock–Euler PHIKS
steps 15 30 45 60 75
order – 2.10 2.06 2.04 2.03

ETD2RK PHIKS
steps 10 20 30 40 50
order – 2.12 2.07 2.05 2.04

exp Rosenbrock–Euler PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

ETD2RK PHISPLIT
steps 30 65 100 135 170
order – 2.05 2.03 2.02 2.02

Table 2: Number of time steps and observed convergence rates for the time integration of Ric-
cati differential equation (25) up to final time T = 0.025, with different exponential integrators
and n̂ = 40. The achieved errors and the wall-clock times are displayed in Figure 3.
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Figure 3: Achieved errors in the Frobenius norm and wall-clock times in seconds for the solu-
tion of Riccati differential equation (25) up to final time T = 0.025, with different integrators
and n̂ = 40. The number of time steps for each exponential method is reported in Table 2. The
input tolerances (both absolute and relative) for ode23 are 3e−3, 4e−4, 2.3e−4, 9.5e−5, and
8.7e−5.

it is possible to write equation (25) (in vector formulation for simplicity of exposition) as{
uuu′(t) = Kuuu(t)+ggg(uuu(t)),
uuu(0) = zzz,

where ggg and zzz are the vectorizations of the nonlinearity and of ZZZ, respectively, and K has the
form

K = I ⊗ I ⊗ I ⊗DT
1 +DT

2 ⊗ I ⊗ I ⊗ I.

Here I is an identity matrix of size n̂× n̂ and D1 ∈ Rn̂×n̂ and D2 ∈ Rn̂×n̂ the discretizations of
the operators ∂xx −10x∂x and ∂yy −100y∂y, respectively. In the context of temporal integration
with exponential Runge–Kutta schemes, we could then use both the PHIKS and the PHISPLIT
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approaches with the even smaller sized matrices D1 and D2, forming then the approximations at
every time steps using Tucker operators with order-4 tensors. However, as this is just possible
because of the specific form of the operator (27), we do not pursue this approach here.

4.3 Advection–diffusion–reaction
We now consider the semidiscretization in space of the following three-dimensional evolution-
ary Advection–Diffusion–Reaction (ADR) equation (see Reference [8])

∂tu(t,x1,x2,x3) = ε∆u(t,x1,x2,x3)+α(∂x1 +∂x2 +∂x3)u(t,x1,x2,x3)

+g(t,x1,x2,x3,u(t,x1,x2,x3)),

u0(x1,x2,x3) = 64x1(1− x1)x2(1− x2)x3(1− x3).

(28)

The nonlinear function g is given by

g(t,x1,x2,x3,u(t,x1,x2,x3)) =
1

1+u(t,x1,x2,x3)2 +Ψ(t,x1,x2,x3),

where Ψ(t,x1,x2,x3) is such that the analytical solution of the equation is

u(t,x1,x2,x3) = etu0(x1,x2,x3).

The problem is solved up to final time T = 1 in the domain [0,1]3 and completed with ho-
mogeneous Dirichlet boundary conditions. The remaining parameters are set to ε = 0.75 and
α = 0.1. By semidiscretizing in space with second order centered finite differences, we ob-
tain a system of type (1) with K having three-dimensional Kronecker sum structure, where
Aµ approximates ε∂xµ xµ

+α∂xµ
. We first perform simulations with n1 = 40, n2 = 41, and

n3 = 42 inner discretization points for the x1, x2 and x3 variables, respectively. The temporal
integration is performed with four methods: the Lawson–Euler scheme (9), the exponential
Euler method (11), the Lawson2b scheme (10) and the ETD2RK method (12) (see Section 3.2
for their practical implementation and the PHISPLIT versions). In particular, concerning the
Lawson schemes, the needed matrix exponentials exp(τAµ), with µ = 1,2,3, are computed
once and for all at the beginning. Then, one and two Tucker operators per time step, for the
first order and second order scheme, respectively, are required to form the approximations dur-
ing the temporal integration. Concerning the PHISPLIT implementation of exponential Euler
and ETD2RK, again we compute once and for all the needed matrix functions ϕ1(τAµ) and
ϕ2(τAµ) before starting the temporal integration, and we then combine them suitably at each
time step. This operation requires a single Tucker operator for the first order scheme and two
for the second order one, as for the aforementioned Lawson schemes, plus the action Kuuun. The
number of time steps for each method, for both the PHISPLIT and PHIKS implementations, is
reported in Table 3, while the reached relative errors and the wall-clock times are summarized
in Figure 4. First of all, we notice that all the methods show the expected convergence rate,
reported in Table 3 as well. The Lawson–Euler method and the exponential Euler scheme in
its PHIKS implementation (see top plot of Figure 4) perform equally well, even if the former
requires much more time steps. Overall, the exponential Euler method in its PHISPLIT variant
is roughly 10 times faster to reach the highest accuracy in this experiment. If we consider the
second order methods (bottom plot of Figure 4), we observe that the Lawson2b scheme needs
much more wall-clock time to reach the same level of accuracy of the other methods, and over-
all the most efficient method is ETD2RK in the PHISPLIT variant. In this plot we report also
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Lawson–Euler
steps 800 8800 16800 24800 32800
order – 1.00 1.00 1.00 1.00

exp Euler PHIKS
steps 50 450 850 1250 1650
order – 1.03 1.00 1.00 1.00

exp Euler PHISPLIT
steps 50 450 850 1250 1650
order – 1.03 1.01 1.00 1.00

Lawson2b
steps 1500 5500 9500 13500 17500
order – 1.96 1.99 2.00 2.00

ETD2RK PHIKS
steps 20 80 140 200 260
order – 1.94 1.97 1.98 1.99

ETD2RK PHISPLIT
steps 40 140 240 340 440
order – 2.10 2.04 2.03 2.02

Table 3: Number of time steps and observed convergence rates for the time integration of the
semidiscretization of the ADR equation (28) up to final time T = 1 , with different exponential
integrators. Here we considered n1 = 40, n2 = 41 and n3 = 42 inner space discretization points
for the x1, x2 and x3 variables, respectively. The achieved errors and the wall-clock times are
displayed in Figure 4.

Lawson–Euler
steps 800 8800 16800 24800 32800
order – 1.00 1.00 1.00 1.00

exp Euler PHIKS
steps 50 450 850 1250 1650
order – 1.02 1.00 1.00 1.00

exp Euler PHISPLIT
steps 50 450 850 1250 1650
order – 1.03 1.01 1.00 1.00

Lawson2b
steps 3000 4500 6000 7500 9000
order – 1.79 1.87 1.92 1.94

ETD2RK PHIKS
steps 20 80 140 200 260
order – 1.94 1.97 1.98 1.99

ETD2RK PHISPLIT
steps 40 140 240 340 440
order – 2.10 2.04 2.03 2.02

Table 4: Number of time steps and observed convergence rates for the time integration of the
semidiscretization of the ADR equation (28) up to final time T = 1 , with different exponential
integrators. Here we considered n1 = 80, n2 = 81 and n3 = 82 inner space discretization points
for the x1, x2 and x3 variables, respectively. The achieved errors and the wall-clock times are
displayed in Figure 5.

the results obtained with the internal MATLAB ode23t implicit integrator. It is an implementa-
tion of the trapezoidal rule with variable step size, which is suggested for stiff problems at low
accuracies. Nevertheless, it performs worse than the considered exponential integrators.
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Figure 4: Achieved errors in the infinity norm and wall-clock times in seconds for the solution
of the semidiscretization of the ADR equation (28) up to final time T = 1, with different ex-
ponential integrators of order one (top) and order two (bottom). Here we considered n1 = 40,
n2 = 41 and n3 = 42 inner space discretization points for the x1, x2 and x3 variables, respec-
tively. The number of time steps for each exponential method is reported in Table 3. The input
tolerances (both absolute and relative) for ode23t are 8e−3, 4e−5, 1e−5, and 5e−6.

Finally, we repeat the experiment with n1 = 80, n2 = 81, and n3 = 82 inner discretization
points for the x1, x2 and x3 variables, respectively. The number of time steps for each method
is reported in Table 4, while the relative errors and the wall-clock times are summarized in
Figure 5. Again, we notice that all the methods show the expected convergence rate, reported
in Table 4 as well. In particular, for large time step sizes, the Lawson2b method suffers from
an order reduction. This is expected, as in these cases the problem is more stiff, and schemes
which employ just the exponential function are affected by this phenomenon (see, for instance,
Reference [18]). Then, from Figure 5 we observe that the PHISPLIT approach is in any case the
most efficient among all the methods and techniques considered, with an increasing speedup for
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Figure 5: Achieved errors in the infinity norm and wall-clock times in seconds for the solution
of the semidiscretization of the ADR equation (28) up to final time T = 1, with different ex-
ponential integrators of order one (top) and order two (bottom). Here we considered n1 = 80,
n2 = 81 and n3 = 82 inner space discretization points for the x1, x2 and x3 variables, respec-
tively. The number of time steps for each method is reported in Table 4.

more stringent accuracies. More in detail, compared with its PHIKS counterparts, the PHISPLIT

implementations are roughly 3.5 time faster, even if (in general) they require more time steps
to reach a comparable accuracy. On the other hand, the Lawson schemes perform poorly. This
is mainly due to the requirement of a large number of time steps to reach the accuracy of
the other methods, which is particularly evident for the second order schemes (see bottom of
Table 4 and Figure 5). Moreover, while ETD2RK in its PHISPLIT variant reached the most
stringent accuracy in less than 10 seconds, Lawson2b was not able to reach an accuracy 10
times larger in 100 seconds. Hence, we decided to stop the simulation with this integrator with
a larger number of time steps. Finally, concerning the internal MATLAB ODE suite, none of the
methods was able to output a solution within 10 minutes.
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5 Conclusions
In this paper, we presented how it is possible to efficiently approximate actions of ϕ-functions
for matrices with d-dimensional Kronecker sum structure using a µ-mode based approach. The
technique, that we call PHISPLIT, is suitable when integrating initial valued ordinary differential
equations with exponential integrators up to second order. It is based on an inexact direction
splitting of the matrix functions involved in the time marching schemes which preserves the
order of the method. The effectiveness and superiority of the approach, with respect to an-
other technique to compute actions of ϕ-functions in Kronecker form, has been shown on a
two-dimensional problem from linear quadratic control and on a three-dimensional advection–
diffusion–reaction equation, using a variety of exponential integrators. Interesting future devel-
opments would be to generalize the approach for higher order integrators and performing GPU
simulations with the PHISPLIT technique, possibly in single and/or half precision (which are
compatible with the magnitude of the errors of the temporal integration), for different problems
from science and engineering.
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