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Abstract

The multinode Shepard method is an extension of inverse distance weighting, devel-
oped as a generalization of the triangular Shepard method to further improve interpolation
accuracy in situations where the classic Shepard method results are limited. In particular,
it considers multiple nodes for local interpolation, offering greater flexibility and improved
accuracy in estimates. In this paper, we present two algorithms for computing the multin-
ode Shepard interpolant, providing the related pseudocodes and MATLAB implementa-
tions.

Keywords: Multivariate Lagrange interpolation, Multinode Shepard method, Rational In-
terpolant, (MSC2020: 65D05, 41A05, 41A20)

1 Introduction
The approximation of scattered data is a crucial technique in modern science and engineering,
enabling the extraction of significant information from incomplete or irregularly distributed
data sets. One method for interpolating such data is Shepard’s method.

The classical Shepard operator reconstructs a function through a weighted combination of
its values at data points. The weights are the normalization of the inverse distances from the
approximation point to the nodes. The nodes are scattered, that is, without any particular struc-
ture. More precisely, let X = {xxx1, . . . ,xxxn} be a set of nodes in R2, and f : R2 → R the function
for which only the evaluations fi = f (xxxi) at the nodes are known. The Shepard operator [15] is
defined as

Sµ [ f ](xxx) =
n

∑
i=1

Aµ,i(xxx) fi, xxx ∈ R2, (1)
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where

Aµ,i(xxx) =
∥xxx− xxxi∥−µ

n

∑
j=1

∥∥xxx− xxx j
∥∥−µ

, xxx ∈ R2, (2)

where µ > 0 is a control parameter and ∥·∥ denotes the Euclidean norm.
The Shepard operator interpolates the data fi at the nodes xxxi, even though it presents, for

u > 1, flat spots in the neighborhood of all data point (which become cusps if u ≤ 1). Moreover,
it has a reproduction degree of zero, meaning it exclusively reproduces constant polynomials.
This last property strongly influences the accuracy of the approximation provided by the Shep-
ard interpolant, which converges to the function f with at most linear speed [13]. In order to
overcome these limitations, several modifications have been proposed over the years [4].

The first significant modification of the Shepard operator is due to Little [14], who, based on
the general idea of defining interpolants through convex combinations, proposed the following
improvement. He considered a triangulation T =

{
t j
}s

j=1 of the set X and replaced the values
fi in the expression of the Shepard operator (1) with the evaluations L j(xxx) of the linear poly-
nomials interpolating at the vertices of each triangle t j. Furthermore, he replaced the classical
weight functions (2), obtained from the normalization of the inverse distances from individual
nodes xxxi, with the product of the normalized inverse distances from the vertices xxx j1 , xxx j2 , xxx j3 of
each triangle t j. The resulting operator, known as the triangular Shepard operator, interpolates
the data fi at the nodes xxxi and reproduces the polynomials up to degree 1. The formal definition
is as follows

Kµ [ f ](xxx) =
s

∑
j=1

Bµ, j(xxx)L j(xxx), xxx ∈ R2, (3)

where

Bµ, j(xxx) =

3
∏

l=1

∥∥xxx− xxx jl

∥∥−µ

s
∑

k=1

3
∏

l=1

∥∥xxx− xxxkl

∥∥−µ

, xxx ∈ R2. (4)

This deep modification of the Shepard operator aims to improve the accuracy and robustness
of scattered data interpolation. The properties of the triangular Shepard operator have been
extensively studied in [7]. In particular, the quadratic convergence of the triangular Shepard
interpolant to the function f has been demonstrated, both in the case of regular triangulations,
such as Delaunay, and in the case of compact triangulations, which do not exclude the inter-
section of triangles in common parts that are not only vertices or adjacent sides. This latter
observation has paved the way for the not easy generalization of the classical Shepard oper-
ator, aiming to further increase the polynomial precision and, consequently, the accuracy of
the approximation. This generalization, known as the multinode Shepard operator, has been
proposed in a series of papers first dealing with the hexagonal case in R2 [6] and the tetrahedral
case in R3 [3], relying on local barycentric coordinate systems, and then the general case in [8],
exploiting a new representation of the local interpolation polynomial in Taylor form, centered
at the barycenter of the local system of interpolation nodes [9].

In this paper, we present and discuss two algorithms for the computation of the multinode
Shepard method. The paper is organized as follows. In Section 2 we recall the definition of
the multinode Shepard operator and describe its properties. In Section 2.1 we present two
algorithms for the implementation of the multinode Shepard method. In section 2.2 we give the
Matlab implementation of the two codes. In Section 2.3 we report some numerical experiments
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to test the effectiveness of the proposed algorithms. Finally, in Section 3 we summarize the
benefits of the multinode Shepard method in terms of accuracy and computational efficiency.

2 Multinode Shepard method
Let Ω ⊂ Rd , d ≥ 2, a non-empty connected open set, ∂Ω its boundary, X = {xxxi}n

i=1 ⊂ Ω∪
∂Ω a finite set of pairwise distinct scattered nodes and f = { fi}n

i=1 a set of function values
associated to X . Let r ∈ N and m =

(r+d
d

)
= dim

(
Pr(Rd)

)
, where Pr(Rd) denotes the space

of polynomials of d variables of total degree ≤ r.
We assume that a set {σ j}s

j=1 is given, such that for each j = 1, . . . ,s, σ j = {xxx jk}m
k=1 ⊂ X

is unisolvent for the polynomial space Pr(Rd) and

s⋃
j=1

σ j = X (5)

(to shorten the notation, for each j = 1, . . . ,s, we are denoting with jk = ϕ j(k) the image of
k ∈ {1, . . . ,m} by an injective map ϕ j from {1, . . . ,m} into {1, . . . ,n}).

A convenient way to represent the unique polynomial Pj ∈ Pr(Rd), j = 1, . . . ,s, interpo-
lating on σ j = {xxx j1, . . . ,xxx jm} the data { f j1, . . . , f jm} is given by the

Pj(xxx) =
m

∑
k=1

ℓ j,k(xxx) f jk , xxx ∈ Rd,

where
ℓ j,k (xxx) = ∑

|α|≤r
a( j,k)

α

(
xxx− xxx(b)j

)α

(6)

are the Lagrange fundamental polynomials written in the Taylor basis centered at the barycenter
xxx(b)j of σ j and α ∈Nm∪{(0, . . . ,0)} is a multi-index (for more details see [9]). As well-known,
the fundamental Lagrange polynomials satisfy the Kronecker delta property

ℓ j,k
(
xxx jl

)
= δkl, j = 1, . . . ,s; k, l = 1, . . . ,m. (7)

The multinode inverse distance weighted functions based on the covering {σ j}s
j=1 are defined

as follows [5]

Wµ, j (xxx) =

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ

s
∑

l=1

m
∏

λ=1

∥∥xxx− xxxlλ

∥∥−µ
, j = 1, . . . ,s, µ > 0. (8)

The multinode functions form a partition of unity

s

∑
j=1

Wµ, j (xxx) = 1, xxx ∈ Rd, (9)

and satisfy the following interpolation properties

Wµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑
j∈Ji

Wµ, j (xxxiii) = 1, (10)
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where we set
Ji = { j ∈ {1, . . . ,s} : xxxi ∈ σ j}, i = 1, . . . ,n.

In addition, if µ > 2 the multinode functions Wµ, j (xxx) satisfy the following differential proper-
ties

∇Wµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑
j∈Ji

∇Wµ, j (xxxi) = 0, (11)

and
HWµ, j (xxxiii) = 0 for all xxxi /∈ σ j, ∑

j∈Ji

HWµ, j (xxxi) = 0, (12)

where, as usual, ∇Wµ, j (xxx) and HWµ, j (xxx) denote the gradient and the Hessian matrix of Wµ, j(xxx),
respectively. Finally, they are rational functions without real singularities if µ is an even integer
(for more details, see [5]).

The multinode Shepard operator is a blend of the local interpolation polynomials realized
by using multinode functions as follows

Mµ [ f ] (xxx) =
s

∑
j=1

Wµ, j (xxx)Pj (xxx) =

s
∑
j=1

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ Pj (xxx)

s
∑
j=1

m
∏

k=1

∥∥xxx− xxx jk

∥∥−µ
. (13)

Since the property (9) Mµ [·] reproduces polynomials of d variables of total degree ≤ r, while
(10) imply that Mµ [ f ] interpolates data fi at xxxi, i = 1, . . . ,n. Moreover, by assuming that the
set X is contained in a compact convex domain Ω and that the function f is of class Cr(Ω)
with partial derivatives Lipschitz-continuous of order r, as proven in [5, Theorem 3.1], the
multinode Shepard operator has an approximation accuracy of O(hp+1) for each µ > d+p+1

m .
Here h denotes the fill distance of the set X .

From equation (13) it follows that the multinode Shepard operator is not uniquely defined,
depending on the particular covering

{
σ j
}s

j=1 of X . The existence of such a covering is almost

surely guaranteed [11]. A straightforward determination of
{

σ j
}s

j=1 can be done by consid-
ering, for each scattered point xxxi, the set of m + q, q > 0, nearest points and by choosing,
among them, the subset of m points for which the local approximation to the function f (xxx)
provided by the polynomial Pj(xxx) is near to the optimal one [10]. For i ̸= i′, by denoting with
σ(xxxi) and σ(xxxi′) the subsets determined starting from the interpolation nodes xxxi and xxxi′ , re-
spectively, we have σ j = σ(xxxi) and σ j′ = σ(xxxi′), j ̸= j′, if σ(xxxi) ̸= σ(xxxi′), otherwise we set
σ j = σ(xxxi) = σ(xxxi′). While ensuring the covering condition, this procedure leads to an overly
expensive definition of the multinode Shepard operator, due to the large number of terms in the
sum (13).

In the following, we specialize in the case d = 2. Algorithms for general dimensions d > 2
can be obtained using the given approaches.

2.1 Pseudo-codes of two algorithms for the implementation of the multin-
ode Shepard method

In this section, we present two algorithms for the computation of the multinode Shepard method.
The Algorithm 1, based on the procedure mentioned above, chooses in the set of m+q, q > 0,
nearby nodes to xxxi, the m discrete Leja points computed by the algorithm presented in [1]. This
algorithm is based on the PA = LU factorization of the Gram matrix. The set σ j consists of the
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points related to the first m rows after the PA = LU factorization. Gaussian elimination with
row pivoting performs a greedy optimization (i.e. not precise but still valid) of the Vander-
monde determinant, iteratively searching for the new row (i.e. selecting the new interpolation
point) such that the modulus of the increased determinant is maximized.

To speed up Algorithm 1 and reduce its computational cost, we introduce Algorithm 2. The
key point of Algorithm 2 is to drastically reduce the number of subsets σ j. Specifically, we
create a copy X ′ = {xxx1, . . . ,xxxn} of the node set X , whose first node is xxx1. In the process of
determination of the covering

{
σ j
}s

j=1, the set X remains fixed and is used to determine the
subset Ni of the nearby nodes to xxxi. We reorder the nodes of Ni according to their increasing
distances from xxxi, with xxxi being the first node of X ′. At the j-th step this rearrangement allows
the identification of the subset σ j by using the procedure stated in Algorithm 1, that is through
the PA = LU factorization of the Gram matrix. The subset σ j is then subtracted from X ′, by
maintaining the initial order of the nodes. Since at the step j+1 the new set X ′ = X ′ \σ j will
no longer contain xxxi but a new first node xxxi′ , the procedure ends when X ′ is empty.

To determine Ni, we set M(Ω) the Lebesgue measure of Ω, ℓ =

√(r+1+2
2

)
M(Ω)

n
and

Qi(ρ) =
[
xi − ρ

2 ,xi +
ρ

2

]
×
[
yi − ρ

2 ,yi +
ρ

2

]
, ρ > 0. Then

Ni = X ∩Qi(ℓ(1+ k/10)) (14)

where k is the first non-negative integer such that #(Ni)≥
(r+1+2

2

)
= dim

(
Pr+1(R2)

)
.

Algorithm 1 The multinode Shepard method with a m-tuple associated to each xxxi

Require: X = {xxxi}n
i=1, the set of scattered points

f = { fi}n
i=1, the set of function values

r, the degree of the local polynomial interpolants
q, with m+q the number of nearest neighbour points for determining

{
σ j
}s

j=1
µ , the power parameter for the computation of (8)
xxx, the set of approximation points

Ensure: f (xxx), approximations of the function f at the points of xxx

1: Set Num, the numerator of the multinode Shepard operator (13), equal to 0
2: Set Den, the denominator of the multinode Shepard operator (13), equal to 0
for i = 1, . . . ,n do

3.1: Compute the vector Dn containing the distances between the i-th node and all other nodes
3.2: Sort Dn according to the increasing distances from xxxi
3.3: Consider the m+ q nearest points to xxxi and choose, among them, the subset σ j of m

discrete Leja points by using the algorithm proposed in [1]
if the subset σ j has not been yet considered then

4.1: Compute the polynomial interpolant of f based on the points of σ j
4.2: Compute the j-th term of the numerator and of the denominator of the multinode

operator (13) and sum them up to Num and Den, respectively
end if

end for
5: Compute the multinode Shepard operator as the ratio between Num and Den
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Algorithm 2 The multinode Shepard method with minimized number of m-tuples
Require: X = {xxxi}n

i=1, the set of scattered points
f = { fi}n

i=1, the set of function values
r, the degree of the local polynomial interpolants
xxx, the set of approximation points

Ensure: f (xxx), approximations of the function f at the points of xxx

1: Compute ℓ =

√
(r+1+2

2 )M(Ω)

n , the length of the side of the square to determine the set of
nearby points
2: Create a copy X ′ of X .
3: Set Num, the numerator of the multinode Shepard operator (13), equal to 0
4: Set Den, the denominator of the multinode Shepard operator (13), equal to 0
5: Set i equal to 0
while X ′ ̸= /0 do

6.1: Compute the set Ni = X ∩Qi(ℓ)
6.2: Set k equal to 1
while #(Ni)<

(r+1+2
2

)
do

7.1: Compute the set Ni = X ∩Qi(ℓ(1+ k/10))
7.2: Update k to k+1

end while
8: Sort Ni according to the increasing distances between the first node xxx′i of X ′ and all nodes

in Ni

9: Choose the among the points in the ordered Ni, the subset σ j of m discrete Leja points
by using the algorithm proposed in [1]

if the subset σ j has not been yet considered then
10.1: Compute the polynomial interpolant of f based on the points of σ j
10.2: Compute the j-th term of the numerator and of the denominator of the multinode

operator (13) and sum them up to Num and Den, respectively
11: Update i to i+1

end if
end while
12: Compute the multinode Shepard operator as the ratio between Num and Den
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2.2 MATLAB code
In this section we describe the MATLAB functions and demos available collected in a package
named Multinode_Shepard freely available at [12].

2.2.1 Function Multinode_Shepard1.m

The function Multinode_Shepard1.m implements the Multinode Shepard method as described
by the pseudocode Algorithm 1. In particular, we have the following Input and Output argu-
ments:

INPUT:

• xn (double array): vector of the x-coordinates of the nodes

• yn (double array): vector of the y-coordinates of the nodes

• fn (double array): vector of the function values at the nodes (xn,yn)

• r (integer scalar): degree of the local polynomial interpolant

• q (integer scalar): number of additional points to select the m-tuple σ j

• mu (integer scalar): power parameter

• x (double array): vector of the x-coordinate of the evalutation points

• y (double array): vector of the y-coordinate of the evalutation points

OUTPUT:

• MO (double array): values of the multinode Shepard operator at the points (x,y)

• s (integer scalar): number of the m-tuples σ j

The function Multinode_Shepard1.m makes use of the following auxiliary functions and
MATLAB functions:

• powers: function which computes the powers of the bivariate monomial basis of total
degree d by using the routine mono_next_grlex.m

• length: computes the length of a vector

• sort: sorts in ascending order the elements of v, where v is the input vector and returns
also the sort index I which specifies how the elements of v were rearranged to obtain the
sorted output vector

• ismember: checks if a vector has the same entrances of the row of a matrix

• sum: computes the sum of the elements of a vector

• BivVand: function which computes the bivariate Vandermonde matrix

• lu: computes the LU factorization of a matrix and returns unit lower triangular matrix L,
upper triangular matrix U , and permutation matrix P
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• backslash: computes the solution of the linear system Ax = b, where A is a matrix and
b is the known term

• eps: spacing of floating point numbers

• prod: computes the product of the over each column of a matrix

2.2.2 Function Multinode_Shepard2.m

The function Multinode_Shepard2.m implements the Multinode Shepard method as described
by the pseudocode Algorithm 2. The output arguments are the same as the function Multinode_Shepard1.m
described in Section 2.2.1 with the addition of the use of the MATLAB function isempty.m
which allows to establish if a vector is empty. The input arguments are:

INPUT:

• xn (double array): vector of the x-coordinates of the nodes

• yn (double array): vector of the y-coordinates of the nodes

• fn (double array): vector of the function values at the nodes (xn,yn)

• r (integer scalar): degree of the local polynomial interpolant

• mu (integer scalar): power parameter

• x (double array): vector of the x-coordinate of the evaluation points

• y (double array): vector of the y-coordinate of the evaluation points

2.2.3 Demos

The demo demo_trial illustrates the numerical experiments provided in Section 2.4. The
demo demo_Stromboli illustrates the numerical experiments provided in Section 2.3 by se-
lecting, through a menu, the degree r of the local polynomial interpolant.

2.3 Numerical experiments
In this section we present some numerical experiments in order to show the efficiency of the
multinode Shepard method. All the tests have been performed on a laptop with a 11th Gen
Intel(R) Core(TM) i7-1165G7 2.80GHz 1.69 GHz processor and 16.00 GB RAM.

2.4 Reconstrution of smooth surfaces
For the first series of experiments, we make use of a set of 10000 Halton interpolation points
and we use them to approximate the Franke function

f1(x,y) = 0.75e−
(9x−2)2+(9y−2)2

4 +0.50e−
(9x−7)2+(9y−3)2

4

+0.75e−
(9x+1)2

49 − (9y+1)2
10 −0.20e−(9x−4)2−(9y−7)2

in the unit square [0,1]× [0,1]. We compute the pointwise error

ei = | f (xxx∗i )−M4[ f ](xxx∗i )|,
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Figure 1: Semilog plot of the maximum absolute errors (MAE), mean absolute errors (MEAE)
and root mean square absolute errors (RSME) by varying the degree r of the local polynomial
approximant from 1 to 8.

number of m-tuples CPU time (sec)
r Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 9890 5173 7 3
2 10000 3354 13 3
3 10000 2406 15 3
4 9999 1783 31 4
5 10000 1362 44 4
6 10000 1183 58 4
7 10000 947 74 4
8 10000 802 88 4

Table 1: Number of m-tuples and CPU time (in seconds) for the experiments in Figure 1.

at a regular grid of ne = 100× 100 points xxx∗i ∈ [0,1]× [0,1]. We compare Algorithm 1 and
Algorithm 2 by computing the maximum, mean and root mean square absolute errors

MAE = max
1≤i≤ne

ei; MEAE =
1
ne

ne

∑
i=1

ei; RMSE =

√
1
ne

ne

∑
i=1

e2
i (15)

and the CPU time (in seconds) for the computation of the approximate surface. In Figure 1
we display the semilog plot of the errors for the two algorithms by varying the degree of the
local polynomial interpolant from 1 to 8 and in Table 1 we report the associated number s of
m-tuples.

2.5 Reconstruction of surfaces from real-world data
For the second series of experiments, we make use of a set of real-world data related to the
Stromboli Volcano including the Sciara del Fuoco of 2002 lava flow [2] which is constituted
by 422710 DEM (Digital Elevation Model) data from which we extract the set of 97020 mock-
Halton data. More precisely, we consider the set of 100000 Halton data mapped into the rectan-
gle [0,2060]× [0,818] and we extract from the DEM data the ones that are closer to the Halton
data by discarding the duplicates. To test the effectiveness of the multinode Shepard method,
we extract from the mock-Halton dataset a subset Zne = {zzz1, . . . ,zzzne} of ne = 2000 data to use
as evaluation points.

In Table 2 we compare Algorithm 1 and Algorithm 2 by computing the maximum, mean
and root mean square absolute errors as in (15) and in Table 3 we compare the maximum, mean
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MAE MEAE RMSE
r Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 1.03e+1 7.90e+0 2.73e−1 2.90e−1 1.34e−2 1.38e−2
2 7.08e+0 2.52e+1 2.39e−1 2.97e−1 1.14e−2 2.02e−2
3 1.23e+1 1.15e+1 2.64e−1 3.61e−1 1.36e−2 1.96e−2
4 7.28e+0 2.21e+1 2.37e−1 3.42e−1 1.16e−2 2.00e−2
5 1.05e+1 1.62e+1 2.87e−1 4.19e−1 1.45e−2 2.23e−2
6 1.45e+1 2.49e+1 2.88e−1 3.97e−1 1.50e−2 2.27e−2

Table 2: Maximum, mean and root mean square absolute errors.

MAErel MEAErel RMSErel
r Alg. 1 Alg. 2 Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 2.28e−1 1.90e−1 1.68e−3 1.70e−3 1.74e−4 1.69e−4
2 1.24e−1 1.72e+0 1.45e−3 2.55e−3 1.38e−4 8.74e−4
3 7.60e−1 1.46e+0 2.04e−3 2.79e−3 4.55e−4 7.62e−4
4 3.29e−1 5.67e−1 1.51e−3 2.47e−3 2.11e−4 4.02e−4
5 1.94e−1 5.07e−1 1.78e−3 2.75e−3 2.03e−4 3.95e−4
6 3.07e−1 2.18e−1 1.71e−3 2.15e−3 2.16e−4 2.02e−4

Table 3: Maximum, mean and root mean square relative errors.

and root mean square relative errors

MAErel = max
1≤i≤ne

ei

f (xxxi)
; MEAErel =

1
ne

ne

∑
i=1

ei

f (xxxi)
; RMSErel =

√
1
ne

ne

∑
i=1

(
ei

f (xxxi)
,

)2

by varying the degree r from 1 to 6.
In Table 4 we report the number s of m-tuples by varying the degree r of the local polyno-

mial interpolant and the CPU time (in seconds) to reconstruct the surface in Figure 2 by using
412×164 grid points in the rectangle [0,2060]× [0,818] as evaluation points.

In Figure 2 we display the surface obtained by using the 95020 mock-Halton points and by
evaluating the multinode Shepard operator on 412×164 grid points in the rectangle [0,2060]×
[0,818].

The numerical results clearly show the convenience of the use of Algorithm 2 instead of
Algorithm 1 since it produces approximations of the same accuracies of Algorithm 1 with

number of m-tuples CPU time (sec)
r Alg. 1 Alg. 2 Alg. 1 Alg. 2
1 94065 56592 808 262
2 95020 34826 1350 236
3 95018 25733 1644 241
4 95019 20200 2313 265
5 95019 16248 2891 271
6 95018 13339 3679 281

Table 4: Number of m-tuples varying the degree r of the local polynomial interpolant and CPU
time in seconds to reconstruct the surface in Figure 2 by using, as evaluation points, 412×164
grid points in the rectangle [0,2060]× [0,818].
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significantly reduced computation cost and CPU time. More precisely, Table 4 shows that Al-
gorithm 2 reduces the number s of subsets σ j as the degree r increases of a factor approximately
equal to n

r+1 , where n is the number of interpolation nodes.

3 Conclusions
We encourage scientists involved in image reconstruction to explore our MATLAB package
Multinode_Shepard for enhanced accuracy and efficiency in scattered data interpolation. This
package implements the multinode Shepard method, a significant advancement over the clas-
sical Shepard’s method, providing robust solutions for interpolating complex datasets, with
reduced computational cost and improved accuracy.

The multinode Shepard method, as demonstrated in our numerical experiments, signifi-
cantly improves interpolation accuracy by utilizing local polynomial interpolants and inverse
distance weighting functions. This method has been rigorously tested on real-world data, such
as the Stromboli Volcano dataset, showing remarkable efficiency and precision.

By using our MATLAB package, you can benefit from:

• high accuracy in data interpolation, even with irregularly distributed datasets;

• efficient computation through optimized algorithms, reducing processing time and com-
putational costs;

• robust performance validated through extensive numerical experiments.

The Multinode_Shepard package is freely available, and we invite you to access the
source code and demonstrations via our GitHub repository: Multinode_Shepard GitHub [12].
This tool is designed to assist in your research, enabling more precise and reliable image re-
constructions.

We welcome feedback and suggestions from the research community and are open to col-
laborations that can further enhance the capabilities and applications of the multinode Shepard
method. Please feel free to reach out to us for any inquiries or potential joint projects.
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Figure 2: The Google Heart image of the Stromboli Volcano with the evidence of the zone from
which the DEM data come from (top) and the reconstructed surface of the Stromboli Volcano
(bottom) evaluated at a regular grid of 412×164 points in the rectangle [0,2060]× [0,818].
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