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Abstract

This paper deals with the construction of a coupled Gaussian rule for weight functions
involving powers, exponentials and trigonometric functions. Starting from a recursive rela-
tion for the moments, nodes and weights are computed by using the Chebyshev algorithm
together with the Golub and Welsch method. An a posteriori approximation of the quadra-
ture error by means of the generalized averaged Gaussian rules is also considered. Several
numerical examples are provided.
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1 Introduction
This work deals with the computation of

J(g) =
∫ +∞

0
g(x)xα−1e−βx cos(ωx)dx, α > 0, β > 0, ω > 0, (1)

where g is a smooth function. The above integral can be also interpreted as the cosine transform
(see [16]) of the function g(x)xα−1e−βx and it is typically referred to as a Fourier type integral,
with a broad range of applications in signal processing. More specifically, integrals of type
(1) arise for instance in geophysical electromagnetic survey (see e.g. [15]). In particular, the
electromagnetic fields induced by an infinite line of electric current placed above the earth
surface can be expressed as in (1), in which the function g encodes the reflection and refraction
of the electromagnetic waves and depends on the properties of the subsoil structure. Such kind
of source is used to simulate a long grounded wire or one side of a large rectangular loop.
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Numerical quadrature for integrals involving oscillating functions

By using the simple change of variable ωx= t, we reformulate the problem in the evaluation
of integrals of type

I( f ) =
∫ +∞

0
f (t)tα−1e−ct cos t dt= ω

αJ(g), (2)

with c = β

ω
, f (t) = g

( t
ω

)
. In this way the frequency is inherited by the scale factor c. Working

with formulation (2), in this paper we construct a coupled Gaussian rule, by first considering
the positive weight function

w(t) = tα−1e−ct (cos t +1) , (3)

and, then, by rewriting integral (2) as

I( f ) =IC( f )− IL( f ),

with
IC( f ) =

∫ +∞

0
f (t)tα−1e−ct (cos t +1)dt, (4)

and
IL( f ) =

∫ +∞

0
f (t)tα−1e−ctdt =

1
cα

∫ +∞

0
f
(y

c

)
yα−1e−ydy. (5)

We notice that the integral IL( f ) can be accurately computed by using the generalized Gauss-
Laguerre formula, that we denote by IL

n ( f ). Therefore, we focus on the construction of a
Gaussian quadrature rule with respect to the weight function (3). Having at disposal such a
formula, denoted by IC

n ( f ), we then consider the approximation

I( f ) =
(

IC
n ( f )− IL

n ( f )
)
+En( f ), (6)

where En( f ) is the quadrature error.
In this setting, since we do not have at disposal the explicit expression of the orthogonal

polynomials πk, k ≥ 0, relative to w(t) as in (3), we need to employ a numerical scheme to
compute the coefficients of the three-term recursion

πk+1(t) = (t −αk)πk(t)−βkπk−1(t), k ≥ 0,
π−1(t) = 0, π0(t) = 1,

with βk > 0. This can be done by evaluating the associated moments

µk =
∫ +∞

0
tkw(t)dt, k ≥ 0, (7)

and then by using the Chebyshev algorithm [4, sect. 2.3]. The coefficients αk,βk, k ≥ 0, define
the tridiagonal symmetric Jacobi matrix, whose eigenvalue decomposition provides abscissas
and weights of the quadrature rule. This final step is efficiently implemented by the famous
Golub and Welsch algorithm [7].

In order to approximate the quadrature error, we consider the corresponding generalized
averaged Gaussian rules (see [14, 12, 13, 3]). These formulas provide an a posteriori estimate
of the error. Moreover, they are easy to construct and typically lead to quite accurate approxi-
mations (see [12]).

We point out that all the results presented in the paper can be easily extended to the case of
integrals as in (1), with the cosine replaced by the sine function (see also Remark 2).
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Numerical quadrature for integrals involving oscillating functions

The Matlab codes for the computation of integrals of type (2) by using the approximation
(6) are available at https://github.com/EleonoraDe/Fourier-type-integrals.

The paper is organized as follows. In Section 2 we derive a recursive relation for the evalua-
tion of the moments and show how to construct the coupled Gaussian formula. Some numerical
experiments, in which we compare the rule with other methods, are provided in Section 3. In
Section 4 we employ the generalized averaged Gaussian formulas to obtain an a posteriori
estimate of the quadrature error. Concluding remarks can be found in Section 5.

2 Construction of the Gaussian formula
In order to develop the Gaussian quadrature rule, relative to the weight function (3), first of all
we need to compute the moments

µk =
∫ +∞

0
tα+k−1e−ct (cos t +1)dt, k ≥ 0. (8)

Proposition 1. The following recursion holds

µ0 =
Γ(α)

cα
(cos(αϕ)(cosϕ)α +1) ,

µk =
k−1+α

c
cos((k+α)ϕ)(cosϕ)k+α +1

cos((k−1+α)ϕ)(cosϕ)k−1+α +1
µk−1, k ≥ 1,

(9)

with ϕ = arctan 1
c and where Γ is the Gamma function.

Proof. First of all, from [8, p.490, 3.944, n.6], for the so called core moments (see [6, sect.
2.1]), defined by

µk,0 =
∫ +∞

0
tα+k−1e−ct cos t dt, k ≥ 0, (10)

we have that

µk,0 =
Γ(k+α)

(1+ c2)
k+α

2
cos((k+α)ϕ), k ≥ 0, ϕ = arctan

1
c
.

Then, by definitions (8)-(10) and by using [8, sect. 3.381, n.4], for the moments µk, k ≥ 0, we
have

µk = µk,0 +
∫ +∞

0
tα+k−1e−ctdt

= Γ(k+α)

(
cos((k+α)ϕ)

(1+ c2)
k+α

2
+

1
ck+α

)

= Γ(k+α)
cos((k+α)ϕ)ck+α +(1+ c2)

k+α

2

(c(1+ c2))
k+α

2
(11)

Defining, for simplicity of notation,

dk :=
cos((k+α)ϕ)ck+α +(1+ c2)

k+α

2

(c(1+ c2))
k+α

2
, k ≥ 0,
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Figure 1: Comparison between formula (9) (dashed line) and formula (11) (solid line) for the
computation of the first 80 moments, with α = 0.7 and c = 0.1. The plots show the relative
errors with respect to a reference value computed by employing formula (9) with extended
precision arithmetic (50 digits).

so that µk = Γ(k+α)dk, after some computations, we have that

dk

dk−1
=

1
c

cos((k+α)ϕ)(cosϕ)k+α +1
cos((k−1+α)ϕ)(cosϕ)k−1+α +1

.

By using the above relation and formula (11), we obtain the result.

We notice that (11) gives an explicit expression for the computation of the moments µk,
k ≥ 0. Anyway, this formula involves the evaluation of the Gamma function and, from our
numerical experiments, for growing k it seems a little less stable than the recursive relation (9)
(see Figure 1).

Remark 2. A similar result can be derived also in the case the cosine in (2) is replaced by the
sine function. In this situation, for the moments

µ̃k =
∫ +∞

0
tα+k−1e−ct (sin t +1) dt, k ≥ 0,

it holds

µ̃0 =
Γ(α)

cα
(sin(αϕ)(cosϕ)α +1) ,

µ̃k =
k−1+α

c
sin((k+α)ϕ)(cosϕ)k+α +1

sin((k−1+α)ϕ)(cosϕ)k−1+α +1
µk−1, k ≥ 1,

with ϕ = arctan 1
c (see [8, p.490, 3.944, n.5]).

At this point, for the computation of the coefficients αk and βk of the recurrence relation

πk+1(t) = (t −αk)πk(t)−βkπk−1(t), k ≥ 0,
π−1(t) = 0, π0(t) = 1,
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with βk > 0, we employ the Chebyshev algorithm (see [4, sect. 2.3] and [5]). Given the first 2n
moments µ0, . . . ,µ2n−1, this algorithm uniquely determines the first n recurrence coefficients
αk and βk, k = 0, . . . ,n−1, by using the mixed moments defined as

σkl =
∫

∞

0
πk(t)t lw(t)dt, k, l ≥−1.

The Chebyshev algorithm is summarized in Algorithm 3.

Algorithm 3. Initialization

α0 =
µ1

µ0
, β0 = µ0,

σ−1,l = 0, l = 1,2, . . . ,2n−2,
σ0,l = µl, 0,1, . . . ,2n−1,

for k = 1,2, . . . ,n−1

for l = k,k+1, . . . ,2n− k−1

σk,l = σk−1,l+1 −αk−1σk−1,l −βk−1σk−2,l,

αk =
σk,k+1

σk,k
−

σk−1,k

σk−1,k−1
, βk =

σk,k

σk−1,k−1
.

After the computation of αk,βk, k = 0, . . . ,n−1, the eigendecomposition of the correspond-
ing Jacobi matrix

Jn =


α0

√
β1 0√

β1 α1
√

β2√
β2 α2

. . .
. . . . . .

√
βn−1

0
√

βn−1 αn−1

 ∈ Rn×n, (12)

provides the nodes t(n)i and weights w(n)
i , i = 1, . . . ,n, of the n-point Gaussian rule (see [1]).

Then, for the computation of integral (4) we use the approximation

IC( f ) = IC
n ( f )+EC

n ( f ) =
n

∑
i=1

w(n)
i f

(
t(n)i

)
+EC

n ( f ). (13)

As for integral (5), denoting by λ
(n)
i , ξ

(n)
i , i = 1, . . . ,n, the nodes and weights of the n-point

generalized Gauss-Laguerre rule, we consider the approximation

IL( f ) = IL
n ( f )+EL

n ( f ) =
1

cα

n

∑
i=1

ξ
(n)
i f

(
λ
(n)
i
c

)
+EL

n ( f ). (14)

In (13) and (14) EC
n ( f ) and EL

n ( f ) denote the corresponding quadrature errors. Finally, for
integral (2) we obtain the rule (6), in which En( f ) = EC

n ( f )− EL
n ( f ), that we call coupled

Gaussian formula.
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3 Numerical experiments
In this section we provide some numerical examples in which we test the performances of the
developed coupled Gaussian rule. We start by observing that, by using the change of variable
x = ct in (2), which leads to

I( f ) = Ic(h) =
1

cα

∫ +∞

0
h(x)xα−1e−xdx, h(x) = f

(x
c

)
cos
(x

c

)
,

and by considering as weight function

wGL(x) = xα−1e−x,

integral (2) can be evaluated by employing the n-point generalized Gauss-Laguerre formula,
that is,

IGL
n (h) =

1
cα

n

∑
i=1

h
(

λ
(n)
i

)
ξ
(n)
i , (15)

so that I( f ) = IGL
n ( f )+EGL

n (h), where EGL
n (h) denotes the quadrature error. As for the com-

putation of the nodes and weights of the generalized Gauss-Laguerre rule, we have used the
Matlab routine lagpts.m of the Chebfun package (see. [2]) In this view, in Figures 2-3-4 we
compare the behavior of the coupled Gaussian rule (6) with (15), with respect to a reference
solution. In other words, as a first set of experiments we compare formula (6) with the Laguerre
rule in which the oscillating term is not part of the weight function. Different sets of parameters
and functions f are considered. All the computations are carried out in Matlab by using ex-
tended precision arithmetic. Indeed, it is known that the computation of the coefficients αk,βk
is a severely ill-conditioned problem, even for k not too large (see e.g. [5]).

We remark that formula (6) requires a double set of points and therefore a double number
of function evaluations. Nevertheless, by looking at the figures, we observe that this formula
is typically more accurate than the generalized Gauss-Laguerre formula, especially for small
values of the parameter c (see Figures 2a-3-4a). Recalling that c = β

ω
in (2), this parameter

handles the scale and, therefore, the frequency of oscillations (cf. (1)-(2)). For large c method
(6) is less effective since the Laguerre rule appears to be reliable for slow oscillations (see
Figures 2b-4b).

As already mentioned in the Introduction, integral (1) can be interpreted as the cosine trans-
form

I(F,ω) =
∫ +∞

0
F(x)cos(ωx)dx, (16)

with F(x) = g(x)xα−1e−βx. An efficient method for the computation of (16) where the function
F is slowly decaying is based on the use of the double exponential transformation (see [10, 9])

x =
MΦ

(
t − π

2M

)
ω

, M > 0, Φ(ζ ) =
ζ

1− e−2π sinhζ
,

that leads to

I(F,ω) =
M
ω

∫ +∞

−∞

F

(
MΦ

(
t − π

2M

)
ω

)
cos
(

MΦ

(
t − π

2M

))
Φ

′
(

t − π

2M

)
dt.
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Figure 2: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 1.1, c = 0.2 (left) and α = 0.5,
c = 0.4 (right). In both cases f (t) = 1

1+e−t .
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Figure 3: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 1.5, c = 0.05 (left) and α = 1.3,
c = 0.1 (right). In both cases f (t) = 1

1+t .
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Figure 4: Comparison between the absolute error obtained by using the coupled Gaussian
approach (6) and the Gauss-Laguerre formula (15) for α = 0.5, c = 0.2 (left) and α = 1.3,
c = 0.7 (right). In both cases f (t) = e−0.5t2

.

The idea was then to consider the trapezoidal rule with step τ and suitable truncation. By
setting Mτ = π as in [11], the method reads

IN(F) =
π

ω

N

∑
n=−N

F

(
MΦ

((
n− 1

2

)
π

M

)
ω

)
cos
(

MΦ

((
n− 1

2

)
π

M

))
×Φ

′
((

n− 1
2

)
π

M

)
.

(17)

This rule can be very efficient but requires the proper selection of τ (M) and N. This corre-
sponds to locate the significant support of the function with respect to the required accuracy
and to define a suitable discretization. As for the sine transform

I(F,ω) =
∫ +∞

0
F(x)sin(ωx)dx,

the method is almost identical with the only difference in the initial substitution, that now reads

x =
MΦ(t)

ω
.

Assuming ω = 1 and taking F(x) = f (x)xα−1e−cx, we have I(F,ω) = I( f ) (cf. (2)-(16)). In
this setting, in Figures 5-6-7 we report some results, where we compare our coupled Gaussian
method with the trapezoidal rule for different sets of parameters. In all pictures we consider
the results of the trapezoidal rule for M = 4,8,12, . . . in order to reduce the step, and then N =
M
2 ,M, 3

2M to work with increasing number of points, that is, by reducing the truncation errors.
As for the coupled Gaussian approach, we truncate rules (13)-(14) by neglecting the terms for
which the values of the weights w(n)

i , λ
(n)
i , i = 1, . . . ,n, are less than 1e− 16. Depending on

the function f and on the parameters, the trapezoidal rule appears to be extremely sensitive
with respect to the choice of N. For small N it shows a very fast initial convergence but also
stagnation, while for larger N the attainable accuracy is higher, but the method is slower (see
Figure 5). Basically, the Gaussian approach appears preferable for α , c and f such that the
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Figure 5: Comparison between the absolute error obtained by using the coupled Gaussian rule
(6) and the trapezoidal rule based on the double exponential transform (17) for α = 1.3, c = 0.7
(left) and α = 1.3, c = 0.3 (right). In both cases f (t) = e−0.5t2

.

support is relatively large (Figures 5-6a), whereas the trapezoidal rule is more effective for
functions rapidly decaying (Figure 6b and other experiments non reported). Figure 7 shows
a situation in which both methods are not much accurate because of the high frequency of
oscillations.

4 A posteriori error estimate
In this section, we construct the generalized averaged Gaussian rules AC

2n+1, AL
2n+1 (see [14]),

associated with the Gaussian formulas IC
n , IL

n , respectively, and employ them to approximate
the quadrature error

En( f ) = I( f )−
(

IC
n ( f )− IL

n ( f )
)
. (18)

The generalized averaged Gaussian formula A2n+1, associated with a generic Gaussian rule
In is given by (see [12])

A2n+1( f ) =
bn+1

bn +bn+1
In( f )+

bn

bn +bn+1
Ãn+1( f ),

where the quadrature formula

Ãn+1( f ) =
n+1

∑
i=1

σ
(n+1)
i f

(
τ
(n+1)
i

)
(19)

arises from the symmetric tridiagonal matrix J̃n+1 ∈ R(n+1)×(n+1), defined as

J̃n+1 =

[
Jn en

√
bn +bn+1

eT
n
√

bn +bn+1 an

]
, (20)

in which en = (0, . . . ,0,1)T ∈ Rn, Jn is as in (12) and ak,bk, k ≥ 0, are the coefficients of the
corresponding three-term recurrence relation of the orthogonal system {pk}k≥0 associated with
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Figure 6: Comparison between the absolute error obtained by using the coupled Gaussian rule
(6) and the trapezoidal rule based on the double exponential transform (17) for α = 0.5, c = 0.4
(left) and α = 0.5, c = 0.1 (right). In both cases f (t) = 1

1+e−t .
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Figure 7: Comparison between the absolute error obtained by using the developed Gaussian
rule (6) and the trapezoidal rule based on the double exponential transform (17) for α = 1.3,
c = 0.05 (left) and α = 0.5, c = 0.1 (right). In both cases f (t) = 1

1+t2 .
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In, that is,

pk+1(t) = (t −ak)pk(t)−bk pk−1(t), k ≥ 0,
p−1(t) = 0, p0(t) = 1.

By construction, formula (19) has the following properties (see [14]):

1. σ
(n+1)
i > 0, i = 1, . . . ,n+1;

2. the nodes τ
(n+1)
i are all real and are interlaced by those of In;

3. τ
(n+1)
i ∈ [0,+∞), for i ≥ 2;

4. τ
(n+1)
1 ∈ [0,∞) if and only if

pn+1(0)
pn−1(0)

≥ bn+1, n ≥ 1. (21)

Let AC
2n+1 and AL

2n+1 be the generalized averaged Gaussian rules corresponding to IC
n and IL

n ,
respectively. In this way error (18) is finally estimated as

En( f )≈
(

AC
2n+1( f )−AL

2n+1( f )
)
−
(

IC
n ( f )− IL

n ( f )
)
. (22)

In Figures 8-9 we show the reliability of the above estimate on some examples. For the
Gauss-Laguerre rule IL

n , the expressions of the corresponding orthogonal polynomials and the
values of the recurrence coefficients are explicitly known. Indeed, it has been verified that (21)
holds true if and only if α ≥ 2 (see [13]). As for the Gaussian formula IC

n , since we do not have
at disposal an analytical expression of the corresponding orthogonal polynomials and of the
recurrence coefficients, relation (21) can only be verified numerically. The experiments show
that it is not always true. Nevertheless, we remark that, even if in some cases for the rules ÃC

n+1,
ÃL

n+1 condition (21) does not hold, experimentally (for the functions considered) the resulting
formulas appear to provide fairly good approximations of the quadrature error.

5 Conclusion
In this work we have considered the construction of a coupled Gaussian formula for weight
functions involving powers, exponentials and oscillating functions. We have compared this
new approach with the Laguerre rule and a particular double exponential trapezoidal formula.
The results show that in some situations the developed rule improves the other two methods. A
practical error estimate, based on the use of the generalized averaged Gaussian rule, has been
presented and tested with good results.
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Figure 8: The absolute values of the error En( f ) and its estimate (22) with α = 0.7, c = 0.5
(left) and α = 1.3, c = 0.3. In both cases f (t) = 1

1+t2 .

0 20 40 60 80 100
10

-15

10
-10

10
-5

10
0

(a)

error

estimate

0 20 40 60 80 100
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b)

Figure 9: The absolute values of the error En( f ) and its estimate (22) with α = 0.5, c = 0.4
(left) and α = 1.1, c = 0.2. In both cases f (t) = 1

1+e−t .
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[12] L. Reichel and M. M. Spalević. A new representation of generalized averaged Gauss
quadrature rules. Appl. Numer. Math., vol. 165, (2021), 614–619. ISSN 0168-9274,1873-
5460. URL http://dx.doi.org/10.1016/j.apnum.2020.11.016
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